适应(眼睛)
计算机科学
理论(学习稳定性)
自适应滤波器
适应性学习
关系(数据库)
主动噪声控制
算法
噪音(视频)
滤波器(信号处理)
人工智能
控制理论(社会学)
机器学习
控制(管理)
降噪
数据挖掘
图像(数学)
光学
计算机视觉
物理
作者
Ioan Doré Landau,Tudor-Bogdan Airimiţoaie,Bernard Vau,Gabriel Buche
标识
DOI:10.23919/ecc57647.2023.10178384
摘要
The paper explores in detail the use of dynamic adaptation gain/learning rate (DAG) for improving the performance of gradient type adaptation/learning algorithms. The DAG is an ARMA (poles-zeros) filter embedded in the gradient type adaptation/learning algorithms and generalizes the various improved gradient algorithms available in the literature. After presenting the DAG algorithm and its relation with other algorithms, its design is developed. Strictly Positive Real (SPR) conditions play an important role in the design of the DAG. Then the stability issues for adaptive/learning systems using a DAG are discussed for large and low values of the adaptation gains/learning rate. The potential of the DAG is then illustrated by experimental results obtained on a relevant adaptive active noise control system (ANC).
科研通智能强力驱动
Strongly Powered by AbleSci AI