An online framework for survival analysis: reframing Cox proportional hazards model for large data sets and neural networks

计算机科学 比例危险模型 杠杆(统计) 随机梯度下降算法 数据集 回归 人工神经网络 算法 人工智能 数据挖掘 统计 数学
作者
Aliasghar Tarkhan,Noah Simon
出处
期刊:Biostatistics [Oxford University Press]
卷期号:25 (1): 134-153 被引量:2
标识
DOI:10.1093/biostatistics/kxac039
摘要

Abstract In many biomedical applications, outcome is measured as a “time-to-event” (e.g., disease progression or death). To assess the connection between features of a patient and this outcome, it is common to assume a proportional hazards model and fit a proportional hazards regression (or Cox regression). To fit this model, a log-concave objective function known as the “partial likelihood” is maximized. For moderate-sized data sets, an efficient Newton–Raphson algorithm that leverages the structure of the objective function can be employed. However, in large data sets this approach has two issues: (i) The computational tricks that leverage structure can also lead to computational instability; (ii) The objective function does not naturally decouple: Thus, if the data set does not fit in memory, the model can be computationally expensive to fit. This additionally means that the objective is not directly amenable to stochastic gradient-based optimization methods. To overcome these issues, we propose a simple, new framing of proportional hazards regression: This results in an objective function that is amenable to stochastic gradient descent. We show that this simple modification allows us to efficiently fit survival models with very large data sets. This also facilitates training complex, for example, neural-network-based, models with survival data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还减肥呢完成签到 ,获得积分10
刚刚
xiaomeng完成签到 ,获得积分10
1秒前
佳儿完成签到,获得积分10
1秒前
2秒前
隐形曼青应助生动的冰双采纳,获得30
2秒前
是小袁呀发布了新的文献求助10
3秒前
3秒前
dfhh发布了新的文献求助10
4秒前
瑞瑞完成签到,获得积分10
5秒前
whale完成签到,获得积分10
7秒前
852应助歪比巴卜采纳,获得10
8秒前
8秒前
zhao完成签到,获得积分10
9秒前
胡美君完成签到,获得积分10
9秒前
吾酒完成签到,获得积分10
11秒前
思源应助陳.采纳,获得10
11秒前
12秒前
14秒前
科研通AI2S应助mengjianfen采纳,获得10
14秒前
MLY完成签到,获得积分10
14秒前
yayaya完成签到,获得积分10
15秒前
16秒前
娜一完成签到 ,获得积分10
16秒前
酸性纯水完成签到,获得积分10
16秒前
故意的可愁完成签到 ,获得积分10
16秒前
赘婿应助dfhh采纳,获得10
18秒前
莫溪月发布了新的文献求助10
19秒前
高兴寒安发布了新的文献求助10
19秒前
大方老姆发布了新的文献求助10
20秒前
文杰完成签到,获得积分20
20秒前
21秒前
xiner完成签到 ,获得积分10
21秒前
bkagyin应助时尚的开山采纳,获得10
21秒前
田様应助哭泣的梦琪采纳,获得10
22秒前
是小袁呀完成签到,获得积分10
23秒前
Akim应助Sichen孟采纳,获得10
23秒前
五花肉发布了新的文献求助10
24秒前
大猪发布了新的文献求助10
25秒前
文杰发布了新的文献求助30
27秒前
三土有兀完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487