亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a radiomic nomogram based on pretherapy dual-energy CT for distinguishing adenocarcinoma from squamous cell carcinoma of the lung

列线图 腺癌 医学 基底细胞 鳞癌 放射科 医学物理学 肿瘤科 病理 癌症 内科学
作者
Zhiyong Chen,Yi Li,Zhiwei Peng,Jianzhong Zhou,Zhaotao Zhang,Yahong Tao,Ze Lin,Anjing He,Mengni Jin,Minjing Zuo
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:3
标识
DOI:10.3389/fonc.2022.949111
摘要

Based on pretherapy dual-energy computed tomography (DECT) images, we developed and validated a nomogram combined with clinical parameters and radiomic features to predict the pathologic subtypes of non-small cell lung cancer (NSCLC) - adenocarcinoma (ADC) and squamous cell carcinoma (SCC).A total of 129 pathologically confirmed NSCLC patients treated at the Second Affiliated Hospital of Nanchang University from October 2017 to October 2021 were retrospectively analyzed. Patients were randomly divided in a ratio of 7:3 (n=90) into training and validation cohorts (n=39). Patients' pretherapy clinical parameters were recorded. Radiomics features of the primary lesion were extracted from two sets of monoenergetic images (40 keV and 100 keV) in arterial phases (AP) and venous phases (VP). Features were selected successively through the intra-class correlation coefficient (ICC) and the least absolute shrinkage and selection operator (LASSO). Multivariate logistic regression analysis was then performed to establish predictive models. The prediction performance between models was evaluated and compared using the receiver operating characteristic (ROC) curve, DeLong test, and Akaike information criterion (AIC). A nomogram was developed based on the model with the best predictive performance to evaluate its calibration and clinical utility.A total of 87 ADC and 42 SCC patients were enrolled in this study. Among the five constructed models, the integrative model (AUC: Model 4 = 0.92, Model 5 = 0.93) combining clinical parameters and radiomic features had a higher AUC than the individual clinical models or radiomic models (AUC: Model 1 = 0.84, Model 2 = 0.79, Model 3 = 0.84). The combined clinical-venous phase radiomics model had the best predictive performance, goodness of fit, and parsimony; the area under the ROC curve (AUC) of the training and validation cohorts was 0.93 and 0.90, respectively, and the AIC value was 60.16. Then, this model was visualized as a nomogram. The calibration curves demonstrated it's good calibration, and decision curve analysis (DCA) proved its clinical utility.The combined clinical-radiomics model based on pretherapy DECT showed good performance in distinguishing ADC and SCC of the lung. The nomogram constructed based on the best-performing combined clinical-venous phase radiomics model provides a relatively accurate, convenient and noninvasive method for predicting the pathological subtypes of ADC and SCC in NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangqin发布了新的文献求助10
5秒前
脑洞疼应助嘎嘎好采纳,获得10
7秒前
FashionBoy应助某人金采纳,获得10
10秒前
11秒前
sy完成签到,获得积分10
11秒前
13秒前
14秒前
17秒前
17秒前
18秒前
丘比特应助童心未泯采纳,获得10
23秒前
儒雅的火龙果完成签到,获得积分10
23秒前
24秒前
29秒前
SYLH完成签到,获得积分0
29秒前
代扁扁完成签到 ,获得积分10
31秒前
31秒前
我是老大应助科研通管家采纳,获得10
37秒前
37秒前
gtgyh完成签到 ,获得积分10
38秒前
40秒前
44秒前
土豪的摩托完成签到 ,获得积分10
46秒前
某人金发布了新的文献求助10
47秒前
思源应助好文章快快来采纳,获得10
51秒前
洒脱鲲完成签到,获得积分10
53秒前
善学以致用应助wf采纳,获得10
54秒前
巫马完成签到 ,获得积分10
1分钟前
坚强的初夏完成签到,获得积分20
1分钟前
光亮如彤完成签到,获得积分10
1分钟前
1分钟前
木穹完成签到,获得积分10
1分钟前
1分钟前
Chillichee应助jugelizi采纳,获得50
1分钟前
1分钟前
1分钟前
mika完成签到,获得积分10
1分钟前
1分钟前
1分钟前
hjygzv完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387