水模型
极化率
参数化复杂度
克里金
高斯过程
分子动力学
灵活性(工程)
统计物理学
高斯分布
计算机科学
过程(计算)
生物系统
算法
化学物理
计算化学
物理
数学
化学
机器学习
分子
量子力学
统计
操作系统
生物
作者
Xinyan Wang,Ying‐Lung Steve Tse
标识
DOI:10.1021/acs.jctc.2c00529
摘要
Water is one of the most common components in molecular dynamics (MD) simulations. Using Gaussian process regression for predicting the properties of a water model without the need of running a simulation whenever the parameters are changed, we obtained a flexible polarizable water model, named SWM4/Fw, that is able to reproduce many reference water properties. The added flexibility is critical for modeling chemical reactions in which chemical bonds can be stretched or even broken and for directly calculating vibrational spectra. In addition to being one of the few water models that are both flexible and polarizable, SWM4/Fw is also efficient thanks to the extended Lagrangian scheme with Drude oscillators. The overall accuracy is on par with or better than the related SWM4-NDP model.
科研通智能强力驱动
Strongly Powered by AbleSci AI