Aligning Eyes between Humans and Deep Neural Network through Interactive Attention Alignment

深层神经网络 杠杆(统计) 计算机科学 人工智能 自动化 机器学习 人工神经网络 基质(化学分析) 工程类 机械工程 材料科学 复合材料
作者
Yuyang Gao,Tong Sun,Liang Zhao,Sung-Soo Hong
出处
期刊:Proceedings of the ACM on human-computer interaction [Association for Computing Machinery]
卷期号:6 (CSCW2): 1-28 被引量:11
标识
DOI:10.1145/3555590
摘要

While Deep Neural Networks (DNNs) are deriving the major innovations through their powerful automation, we are also witnessing the peril behind automation as a form of bias, such as automated racism, gender bias, and adversarial bias. As the societal impact of DNNs grows, finding an effective way to steer DNNs to align their behavior with the human mental model has become indispensable in realizing fair and accountable models. While establishing the way to adjust DNNs to "think like humans'' is in pressing need, there have been few approaches aiming to capture how "humans would think'' when DNNs introduce biased reasoning in seeing a new instance. We propose Interactive Attention Alignment (IAA), a framework that uses the methods for visualizing model attention, such as saliency maps, as an interactive medium that humans can leverage to unveil the cases of DNN's biased reasoning and directly adjust the attention. To realize more effective human-steerable DNNs than state-of-the-art, IAA introduces two novel devices. First, IAA uses Reasonability Matrix to systematically identify and adjust the cases of biased attention. Second, IAA applies GRADIA, a computational pipeline designed for effectively applying the adjusted attention to jointly maximize attention quality and prediction accuracy. We evaluated Reasonability Matrix in Study 1 and GRADIA in Study 2 in the gender classification problem. In Study 1, we found applying Reasonability Matrix in bias detection can significantly improve the perceived quality of model attention from human eyes than not applying Reasonability Matrix. In Study 2, we found using GRADIA significantly improves (1) the human-assessed perceived quality of model attention and (2) model performance in scenarios where the training samples are limited. Based on our observation in the two studies, we present implications for future design in the problem space of social computing and interactive data annotation toward achieving a human-centered steerable AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Yaoz发布了新的文献求助10
3秒前
6秒前
SciGPT应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
zhuzhuxia完成签到,获得积分10
11秒前
11秒前
爱静静应助黑眼圈采纳,获得30
13秒前
政政勇闯世界完成签到,获得积分10
14秒前
栗子应助leoooo采纳,获得10
15秒前
珊熙发布了新的文献求助10
16秒前
zj杰发布了新的文献求助10
16秒前
17秒前
君华海逸完成签到,获得积分10
17秒前
在水一方应助感动尔柳采纳,获得10
18秒前
19秒前
Clover04应助瘦瘦的寒珊采纳,获得10
19秒前
佳雪儿完成签到,获得积分10
21秒前
zyc发布了新的文献求助10
21秒前
非也非也6完成签到,获得积分10
23秒前
默11发布了新的文献求助10
23秒前
酷波er应助克己复礼采纳,获得10
23秒前
爆米花应助PONY采纳,获得10
26秒前
秋冬完成签到 ,获得积分10
26秒前
26秒前
善学以致用应助香蕉寒梅采纳,获得10
27秒前
27秒前
alison发布了新的文献求助20
27秒前
珊熙完成签到,获得积分10
29秒前
深情安青应助zyc采纳,获得10
29秒前
30秒前
Vicky完成签到 ,获得积分10
33秒前
35秒前
36秒前
TheGala完成签到,获得积分10
37秒前
感动尔柳发布了新的文献求助10
37秒前
38秒前
asdfghjk完成签到,获得积分10
38秒前
苏78发布了新的文献求助10
40秒前
沾沾波发布了新的文献求助10
42秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148036
求助须知:如何正确求助?哪些是违规求助? 2799034
关于积分的说明 7833337
捐赠科研通 2456217
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601620