DFD-SS: Document Forgery Detection using Spectral – Spatial Features for Hyperspectral Images

高光谱成像 人工智能 模式识别(心理学) 计算机科学 自编码 特征提取 冗余(工程) 光谱带 特征(语言学) 光谱特征 深度学习 主成分分析 计算机视觉 遥感 地质学 语言学 哲学 操作系统
作者
Garima Jaiswal,Arun Sharma,Sumit Yadav
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:89: 103690-103690 被引量:6
标识
DOI:10.1016/j.jvcir.2022.103690
摘要

In the present era of machines and edge-cutting technologies, still document frauds persist. They are done intuitively by using almost identical inks, that it becomes challenging to detect them—this demands an approach that efficiently investigates the document and leaves it intact. Hyperspectral imaging is one such a type of approach that captures the images from hundreds to thousands of spectral bands and analyzes the images through their spectral and spatial features, which is not possible by conventional imaging. Deep learning is an edge-cutting technology known for solving critical problems in various domains. Utilizing supervised learning imposes constraints on its usage in real scenarios, as the inks used in forgery are not known prior. Therefore, it is beneficial to use unsupervised learning. An unsupervised feature extraction through a Convolutional Autoencoder (CAE) followed by Logistic Regression (LR) for classification is proposed (CAE-LR). Feature extraction is evolved around spectral bands, spatial patches, and spectral-spatial patches. We inspected the impact of spectral, spatial, and spectral-spatial features by mixing inks in equal and unequal proportion using CAE-LR on the UWA writing ink hyperspectral images dataset for blue and black inks. Hyperspectral images are captured at multiple correlated spectral bands, resulting in information redundancy handled by restoring certain principal components. The proposed approach is compared with eight state-of-art approaches used by the researchers. The results depicted that by using the combination of spectral and spatial patches, the classification accuracy enhanced by 4.85% for black inks and 0.13% for blue inks compared to state-of-art results. In the present scenario, the primary area concern is to identify and detect the almost similar inks used in document forgery, are efficiently managed by the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强亦丝应助白华苍松采纳,获得10
刚刚
hecarli完成签到,获得积分10
1秒前
1秒前
ww完成签到,获得积分20
1秒前
2秒前
毅诚菌完成签到,获得积分10
2秒前
YPF完成签到,获得积分10
2秒前
3秒前
阿海发布了新的文献求助10
3秒前
Crisp发布了新的文献求助10
3秒前
姜且发布了新的文献求助10
3秒前
沉默清炎完成签到,获得积分10
4秒前
布蓝图完成签到 ,获得积分10
4秒前
成就铸海完成签到 ,获得积分10
4秒前
快乐小豚鼠完成签到,获得积分10
5秒前
5秒前
英姑应助科研小趴菜采纳,获得10
5秒前
LL完成签到,获得积分20
6秒前
6秒前
悦子发布了新的文献求助10
6秒前
7秒前
甜美代秋发布了新的文献求助30
7秒前
7秒前
kanglan完成签到,获得积分10
9秒前
阿海完成签到,获得积分10
9秒前
烟花应助风宝宝采纳,获得10
9秒前
10秒前
10秒前
七七完成签到,获得积分10
11秒前
十六月亮发布了新的文献求助20
12秒前
12秒前
自觉的元芹完成签到,获得积分10
13秒前
nini发布了新的文献求助10
13秒前
13秒前
Luna完成签到 ,获得积分10
13秒前
sallltyyy完成签到,获得积分10
13秒前
甜美代秋完成签到,获得积分20
14秒前
悦子完成签到,获得积分10
14秒前
Ymy完成签到,获得积分10
14秒前
凹凸先森应助沙子采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467453
求助须知:如何正确求助?哪些是违规求助? 3060348
关于积分的说明 9071262
捐赠科研通 2750752
什么是DOI,文献DOI怎么找? 1509402
科研通“疑难数据库(出版商)”最低求助积分说明 697296
邀请新用户注册赠送积分活动 697280