Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries

生物量(生态学) 生物炭 机器学习 热解 过程(计算) 微波食品加热 工艺工程 预测建模 计算机科学 人工智能 生物能源 环境科学 生化工程 生物燃料 工程类 废物管理 生态学 操作系统 生物 电信
作者
Yadong Yang,Hossein Shahbeik,Alireza Shafizadeh,Nima Masoudnia,Shahin Rafiee,Yijia Zhang,Junting Pan,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Renewable Energy [Elsevier]
卷期号:201: 70-86 被引量:55
标识
DOI:10.1016/j.renene.2022.11.028
摘要

Microwave heating is a promising solution to overcome the shortcomings of conventional heating in biomass pyrolysis. Nevertheless, biomass microwave pyrolysis is a complex thermochemical process governed by several endogenous and exogenous parameters. Modeling such a complicated process is challenging due to the need for many experimental measurements. Machine learning can effectively cope with the time and cost constraints of experiments. Hence, this study uses machine learning to model the quantity and quality of products (biochar, bio-oil, and syngas) that evolve in biomass microwave pyrolysis. An inclusive dataset encompassing different biomass types, microwave absorbers, and reaction conditions is selected from the literature and subjected to data mining. Three machine learning models (support vector regressor, random forest regressor, and gradient boost regressor) are used to model the process based on 14 descriptors. The gradient boost regressor model provides better prediction performance (R 2 > 0.822, RMSE <12.38, and RRMSE <0.765) than the other models. SHAP analysis generally reveals the significance of operating temperature, microwave power, and reaction time in predicting the output responses. Overall, the developed machine learning model can effectively save cost and time during biomass microwave pyrolysis while serving as a valuable tool for guiding experiments and facilitating optimization. • Biomass microwave pyrolysis is characterized by using machine learning technology. • The collected data is subjected to in-depth data mining and mechanistic explanations. • Gradient boost regressor provides the best prediction performance with an R 2 > 0.822. • SHAP analysis reveals the significance of descriptors in predicting the output responses. • A simple computer program is developed to characterize biomass microwave pyrolysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助程破茧采纳,获得10
刚刚
华仔应助biocx采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
慕青应助空城旧梦采纳,获得10
3秒前
3秒前
3秒前
FashionBoy应助DYZ采纳,获得10
3秒前
3秒前
科研好累哦完成签到,获得积分10
3秒前
852应助77不88采纳,获得10
4秒前
4秒前
大力的乐曲完成签到,获得积分10
4秒前
罗备完成签到,获得积分10
5秒前
tooty完成签到,获得积分10
6秒前
dake完成签到,获得积分10
6秒前
Lin发布了新的文献求助10
6秒前
6秒前
Micheallee完成签到,获得积分10
7秒前
卢西完成签到,获得积分10
7秒前
7秒前
wzz发布了新的文献求助10
8秒前
摇落月完成签到,获得积分10
9秒前
科研通AI6应助yangyj采纳,获得10
12秒前
12秒前
12秒前
明亮梦山完成签到 ,获得积分10
13秒前
wdw2501完成签到,获得积分10
13秒前
14秒前
一一完成签到,获得积分10
14秒前
15秒前
DYZ发布了新的文献求助10
15秒前
16秒前
jjh完成签到,获得积分10
17秒前
SciGPT应助超级寒凝采纳,获得10
17秒前
17秒前
18秒前
outlast完成签到,获得积分10
18秒前
19秒前
忐忑的龙猫完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352