Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries

生物量(生态学) 生物炭 机器学习 热解 过程(计算) 微波食品加热 工艺工程 预测建模 计算机科学 人工智能 生物能源 环境科学 生化工程 生物燃料 工程类 废物管理 生态学 操作系统 生物 电信
作者
Yadong Yang,Hossein Shahbeik,Alireza Shafizadeh,Nima Masoudnia,Shahin Rafiee,Yijia Zhang,Junting Pan,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Renewable Energy [Elsevier]
卷期号:201: 70-86 被引量:55
标识
DOI:10.1016/j.renene.2022.11.028
摘要

Microwave heating is a promising solution to overcome the shortcomings of conventional heating in biomass pyrolysis. Nevertheless, biomass microwave pyrolysis is a complex thermochemical process governed by several endogenous and exogenous parameters. Modeling such a complicated process is challenging due to the need for many experimental measurements. Machine learning can effectively cope with the time and cost constraints of experiments. Hence, this study uses machine learning to model the quantity and quality of products (biochar, bio-oil, and syngas) that evolve in biomass microwave pyrolysis. An inclusive dataset encompassing different biomass types, microwave absorbers, and reaction conditions is selected from the literature and subjected to data mining. Three machine learning models (support vector regressor, random forest regressor, and gradient boost regressor) are used to model the process based on 14 descriptors. The gradient boost regressor model provides better prediction performance (R 2 > 0.822, RMSE <12.38, and RRMSE <0.765) than the other models. SHAP analysis generally reveals the significance of operating temperature, microwave power, and reaction time in predicting the output responses. Overall, the developed machine learning model can effectively save cost and time during biomass microwave pyrolysis while serving as a valuable tool for guiding experiments and facilitating optimization. • Biomass microwave pyrolysis is characterized by using machine learning technology. • The collected data is subjected to in-depth data mining and mechanistic explanations. • Gradient boost regressor provides the best prediction performance with an R 2 > 0.822. • SHAP analysis reveals the significance of descriptors in predicting the output responses. • A simple computer program is developed to characterize biomass microwave pyrolysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到,获得积分10
刚刚
忧心的洙发布了新的文献求助10
刚刚
xliiii发布了新的文献求助10
刚刚
小鱼完成签到,获得积分10
1秒前
热气球完成签到,获得积分10
1秒前
wanci应助ppat5012采纳,获得10
2秒前
yiyi关注了科研通微信公众号
2秒前
2秒前
Steffi完成签到,获得积分10
2秒前
积极的睫毛完成签到,获得积分10
3秒前
amberzyc应助玫瑰少年采纳,获得10
3秒前
Hossiu发布了新的文献求助10
4秒前
逝水无痕完成签到,获得积分10
4秒前
4秒前
Tomyyh完成签到,获得积分10
4秒前
5秒前
KEYANXIAOBAI发布了新的文献求助10
5秒前
徐yy完成签到 ,获得积分10
5秒前
XUXU发布了新的文献求助10
5秒前
..完成签到,获得积分10
5秒前
Legend_完成签到 ,获得积分10
5秒前
缓慢天菱完成签到,获得积分10
5秒前
zhangkx23完成签到,获得积分10
6秒前
小阳肖恩完成签到 ,获得积分10
6秒前
高登登发布了新的文献求助10
7秒前
8秒前
酥酥脆完成签到,获得积分10
8秒前
8秒前
小羊完成签到,获得积分10
8秒前
顾矜应助UGO采纳,获得10
10秒前
童宝完成签到,获得积分10
10秒前
寻找组织应助爪人猫采纳,获得30
10秒前
在水一方应助Luhh采纳,获得10
11秒前
快乐非笑完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
无欲无求发布了新的文献求助20
12秒前
音玥完成签到,获得积分10
12秒前
无极微光应助友好雅山采纳,获得20
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997