Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries

生物量(生态学) 生物炭 机器学习 热解 过程(计算) 微波食品加热 工艺工程 预测建模 计算机科学 人工智能 生物能源 环境科学 生化工程 生物燃料 工程类 废物管理 生态学 操作系统 生物 电信
作者
Yadong Yang,Hossein Shahbeik,Alireza Shafizadeh,Nima Masoudnia,Shahin Rafiee,Yijia Zhang,Junting Pan,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:201: 70-86 被引量:55
标识
DOI:10.1016/j.renene.2022.11.028
摘要

Microwave heating is a promising solution to overcome the shortcomings of conventional heating in biomass pyrolysis. Nevertheless, biomass microwave pyrolysis is a complex thermochemical process governed by several endogenous and exogenous parameters. Modeling such a complicated process is challenging due to the need for many experimental measurements. Machine learning can effectively cope with the time and cost constraints of experiments. Hence, this study uses machine learning to model the quantity and quality of products (biochar, bio-oil, and syngas) that evolve in biomass microwave pyrolysis. An inclusive dataset encompassing different biomass types, microwave absorbers, and reaction conditions is selected from the literature and subjected to data mining. Three machine learning models (support vector regressor, random forest regressor, and gradient boost regressor) are used to model the process based on 14 descriptors. The gradient boost regressor model provides better prediction performance (R 2 > 0.822, RMSE <12.38, and RRMSE <0.765) than the other models. SHAP analysis generally reveals the significance of operating temperature, microwave power, and reaction time in predicting the output responses. Overall, the developed machine learning model can effectively save cost and time during biomass microwave pyrolysis while serving as a valuable tool for guiding experiments and facilitating optimization. • Biomass microwave pyrolysis is characterized by using machine learning technology. • The collected data is subjected to in-depth data mining and mechanistic explanations. • Gradient boost regressor provides the best prediction performance with an R 2 > 0.822. • SHAP analysis reveals the significance of descriptors in predicting the output responses. • A simple computer program is developed to characterize biomass microwave pyrolysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Wing采纳,获得10
刚刚
刚刚
研友_LaV1xn发布了新的文献求助10
1秒前
ralph_liu完成签到,获得积分10
1秒前
一叶知秋完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助茗白采纳,获得10
3秒前
4秒前
5秒前
肖谦发布了新的文献求助30
6秒前
研友_LaV1xn完成签到,获得积分10
7秒前
单薄八宝粥关注了科研通微信公众号
7秒前
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
purple完成签到 ,获得积分10
13秒前
13秒前
Sun发布了新的文献求助10
13秒前
勤奋灵凡发布了新的文献求助10
14秒前
务实的犀牛完成签到,获得积分10
14秒前
echo0411发布了新的文献求助30
15秒前
张莜莜发布了新的文献求助150
17秒前
Hale完成签到,获得积分0
17秒前
贪玩的访风完成签到 ,获得积分10
17秒前
茗白发布了新的文献求助10
17秒前
18秒前
摆哥发布了新的文献求助10
18秒前
浮游应助毕长富采纳,获得10
20秒前
21秒前
小智发布了新的文献求助10
21秒前
我爱小juju完成签到,获得积分10
22秒前
Joy完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952013
求助须知:如何正确求助?哪些是违规求助? 4214746
关于积分的说明 13109538
捐赠科研通 3996305
什么是DOI,文献DOI怎么找? 2187423
邀请新用户注册赠送积分活动 1202774
关于科研通互助平台的介绍 1115594