Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries

生物量(生态学) 生物炭 机器学习 热解 过程(计算) 微波食品加热 工艺工程 预测建模 计算机科学 人工智能 生物能源 环境科学 生化工程 生物燃料 工程类 废物管理 生态学 操作系统 生物 电信
作者
Yadong Yang,Hossein Shahbeik,Alireza Shafizadeh,Nima Masoudnia,Shahin Rafiee,Yijia Zhang,Junting Pan,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:201: 70-86 被引量:55
标识
DOI:10.1016/j.renene.2022.11.028
摘要

Microwave heating is a promising solution to overcome the shortcomings of conventional heating in biomass pyrolysis. Nevertheless, biomass microwave pyrolysis is a complex thermochemical process governed by several endogenous and exogenous parameters. Modeling such a complicated process is challenging due to the need for many experimental measurements. Machine learning can effectively cope with the time and cost constraints of experiments. Hence, this study uses machine learning to model the quantity and quality of products (biochar, bio-oil, and syngas) that evolve in biomass microwave pyrolysis. An inclusive dataset encompassing different biomass types, microwave absorbers, and reaction conditions is selected from the literature and subjected to data mining. Three machine learning models (support vector regressor, random forest regressor, and gradient boost regressor) are used to model the process based on 14 descriptors. The gradient boost regressor model provides better prediction performance (R 2 > 0.822, RMSE <12.38, and RRMSE <0.765) than the other models. SHAP analysis generally reveals the significance of operating temperature, microwave power, and reaction time in predicting the output responses. Overall, the developed machine learning model can effectively save cost and time during biomass microwave pyrolysis while serving as a valuable tool for guiding experiments and facilitating optimization. • Biomass microwave pyrolysis is characterized by using machine learning technology. • The collected data is subjected to in-depth data mining and mechanistic explanations. • Gradient boost regressor provides the best prediction performance with an R 2 > 0.822. • SHAP analysis reveals the significance of descriptors in predicting the output responses. • A simple computer program is developed to characterize biomass microwave pyrolysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑笑最可爱完成签到,获得积分10
1秒前
张张完成签到,获得积分10
1秒前
2秒前
宁annie完成签到,获得积分10
3秒前
4秒前
5秒前
yuyang完成签到,获得积分20
6秒前
李健的小迷弟应助章耀楠采纳,获得10
6秒前
芋泥脑袋发布了新的文献求助10
6秒前
可爱的函函应助周少采纳,获得10
7秒前
义气的咖啡豆完成签到,获得积分10
7秒前
six完成签到,获得积分10
8秒前
半夏发布了新的文献求助10
8秒前
Otter完成签到,获得积分10
9秒前
乖加油发布了新的文献求助20
9秒前
冰洁儿完成签到,获得积分10
10秒前
qing发布了新的文献求助10
11秒前
13秒前
15秒前
alarfred完成签到,获得积分10
18秒前
18秒前
早点睡觉完成签到,获得积分10
18秒前
周少发布了新的文献求助10
19秒前
19秒前
嫁个养熊猫的完成签到 ,获得积分10
22秒前
明理从露发布了新的文献求助10
22秒前
章耀楠发布了新的文献求助10
22秒前
Ryuki完成签到 ,获得积分10
23秒前
小月完成签到,获得积分10
23秒前
Betty发布了新的文献求助10
23秒前
Cll完成签到 ,获得积分10
27秒前
芋泥脑袋完成签到,获得积分10
27秒前
明理从露完成签到,获得积分10
29秒前
Betty完成签到,获得积分10
30秒前
Jasper应助xiaohong采纳,获得10
30秒前
失眠的笑翠完成签到 ,获得积分10
30秒前
章耀楠完成签到,获得积分10
31秒前
贪玩的谷芹完成签到 ,获得积分10
33秒前
@Hi完成签到,获得积分10
33秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150