已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review on recent developments in cancer detection using Machine Learning and Deep Learning models

计算机科学 人工智能 深度学习 机器学习
作者
Sonam Maurya,Sushil Tiwari,Monika Chowdary Mothukuri,Chandra Mallika Tangeda,Rohitha Naga Sri Nandigam,Durga Chandana Addagiri
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104398-104398 被引量:44
标识
DOI:10.1016/j.bspc.2022.104398
摘要

Cancer is a fatal illness frequently caused by a variety of obsessive changes and genetic disorders. Cancer cells knowing as abnormal cells can grow in any part of the human body. A preliminary diagnosis of cancer is necessary as cancer is one of the most alarming diseases. Detecting cancer and treating it in the initial stage can decrease the death rate. Our aim of this study is to analyze and review various relevant research papers published over the last 5 years for cancer detection using Machine Learning (ML) and Deep Learning (DL) techniques. We have mainly considered the techniques developed for Brain Tumor detection, Cervical Cancer detection, Breast Cancer detection, Skin Cancer detection and Lung Cancer detection. Recent statistics show that these cancers are causing higher mortality rates among men and women in comparison to the other types of cancers. In this review article, various recent ML and DL models developed to detect these cancers are analyzed and discussed on the most important metrics such as accuracy, specificity, sensitivity, F-score, precision, recall etc. which are tested on several datasets in the literature. At last, open research challenges in each cancer category are also pointed out for the purpose of future research work opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曾经如是完成签到,获得积分10
1秒前
jimmy完成签到,获得积分10
1秒前
3秒前
李梦如完成签到,获得积分20
3秒前
5秒前
舒适的一凤完成签到 ,获得积分10
5秒前
Orange应助何何何何何采纳,获得10
6秒前
6秒前
6秒前
希望天下0贩的0应助诺一44采纳,获得10
6秒前
6秒前
8秒前
jimmy发布了新的文献求助10
9秒前
陈梅红完成签到 ,获得积分10
10秒前
momo123完成签到 ,获得积分10
10秒前
11秒前
梨小7完成签到,获得积分10
12秒前
赘婿应助早晚炸了学校采纳,获得10
13秒前
13秒前
14秒前
张张完成签到,获得积分10
15秒前
Adzuki0812发布了新的文献求助30
16秒前
言论完成签到,获得积分10
18秒前
19秒前
20秒前
爱笑小笼包完成签到,获得积分10
20秒前
GaoChenxi完成签到 ,获得积分10
21秒前
李健的小迷弟应助张之静采纳,获得10
22秒前
FashionBoy应助吉他平方采纳,获得10
23秒前
23秒前
24秒前
CrazyLion完成签到,获得积分10
25秒前
科目三应助李梦如采纳,获得10
25秒前
米饭多加水完成签到,获得积分10
25秒前
26秒前
27秒前
nikki完成签到,获得积分10
28秒前
28秒前
小黄黄发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744