A review on recent developments in cancer detection using Machine Learning and Deep Learning models

计算机科学 人工智能 深度学习 机器学习
作者
Sonam Maurya,Sushil Tiwari,Monika Chowdary Mothukuri,Chandra Mallika Tangeda,Rohitha Naga Sri Nandigam,Durga Chandana Addagiri
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104398-104398 被引量:44
标识
DOI:10.1016/j.bspc.2022.104398
摘要

Cancer is a fatal illness frequently caused by a variety of obsessive changes and genetic disorders. Cancer cells knowing as abnormal cells can grow in any part of the human body. A preliminary diagnosis of cancer is necessary as cancer is one of the most alarming diseases. Detecting cancer and treating it in the initial stage can decrease the death rate. Our aim of this study is to analyze and review various relevant research papers published over the last 5 years for cancer detection using Machine Learning (ML) and Deep Learning (DL) techniques. We have mainly considered the techniques developed for Brain Tumor detection, Cervical Cancer detection, Breast Cancer detection, Skin Cancer detection and Lung Cancer detection. Recent statistics show that these cancers are causing higher mortality rates among men and women in comparison to the other types of cancers. In this review article, various recent ML and DL models developed to detect these cancers are analyzed and discussed on the most important metrics such as accuracy, specificity, sensitivity, F-score, precision, recall etc. which are tested on several datasets in the literature. At last, open research challenges in each cancer category are also pointed out for the purpose of future research work opportunities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘿嘿应助小高采纳,获得10
3秒前
cc完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Zoe完成签到,获得积分10
6秒前
舒苏应助ABCDE采纳,获得30
8秒前
9秒前
慧子完成签到,获得积分10
9秒前
小二郎应助家夜雪采纳,获得10
9秒前
shiiiny发布了新的文献求助10
9秒前
合适白猫完成签到,获得积分10
10秒前
BowieHuang应助元谷雪采纳,获得10
10秒前
薄荷完成签到,获得积分10
10秒前
11秒前
害怕的帽子完成签到 ,获得积分10
11秒前
12秒前
13秒前
寇博翔发布了新的文献求助10
14秒前
烂漫的飞松完成签到,获得积分10
14秒前
苹果冬莲完成签到,获得积分10
14秒前
去心邻域完成签到,获得积分10
15秒前
天地一体完成签到,获得积分10
18秒前
20秒前
梦玲完成签到 ,获得积分10
20秒前
小二郎应助可可奇采纳,获得10
23秒前
24秒前
慕青应助tguczf采纳,获得10
24秒前
25秒前
25秒前
NexusExplorer应助小高采纳,获得10
25秒前
张贵虎完成签到 ,获得积分10
26秒前
李兴完成签到 ,获得积分10
26秒前
27秒前
华仔应助11采纳,获得10
27秒前
研友_VZG7GZ应助竹寺采纳,获得10
27秒前
脑洞疼应助jetwang采纳,获得200
28秒前
29秒前
30秒前
30秒前
清脆的台灯完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867