A review on recent developments in cancer detection using Machine Learning and Deep Learning models

计算机科学 人工智能 深度学习 机器学习
作者
Sonam Maurya,Sushil Tiwari,Monika Chowdary Mothukuri,Chandra Mallika Tangeda,Rohitha Naga Sri Nandigam,Durga Chandana Addagiri
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104398-104398 被引量:44
标识
DOI:10.1016/j.bspc.2022.104398
摘要

Cancer is a fatal illness frequently caused by a variety of obsessive changes and genetic disorders. Cancer cells knowing as abnormal cells can grow in any part of the human body. A preliminary diagnosis of cancer is necessary as cancer is one of the most alarming diseases. Detecting cancer and treating it in the initial stage can decrease the death rate. Our aim of this study is to analyze and review various relevant research papers published over the last 5 years for cancer detection using Machine Learning (ML) and Deep Learning (DL) techniques. We have mainly considered the techniques developed for Brain Tumor detection, Cervical Cancer detection, Breast Cancer detection, Skin Cancer detection and Lung Cancer detection. Recent statistics show that these cancers are causing higher mortality rates among men and women in comparison to the other types of cancers. In this review article, various recent ML and DL models developed to detect these cancers are analyzed and discussed on the most important metrics such as accuracy, specificity, sensitivity, F-score, precision, recall etc. which are tested on several datasets in the literature. At last, open research challenges in each cancer category are also pointed out for the purpose of future research work opportunities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漠雨寒灯发布了新的文献求助10
5秒前
合适的平安完成签到,获得积分10
6秒前
6秒前
8秒前
kk发布了新的文献求助10
9秒前
落落完成签到,获得积分20
10秒前
马子妍发布了新的文献求助10
12秒前
12秒前
噗噗完成签到,获得积分10
14秒前
kk完成签到,获得积分20
15秒前
Ryan完成签到,获得积分10
18秒前
许垲锋发布了新的文献求助10
19秒前
吴YB完成签到,获得积分10
19秒前
WJ完成签到,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
spc68应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
22秒前
22秒前
李健应助angelinazh采纳,获得10
22秒前
科研通AI6应助牙ya采纳,获得10
22秒前
25秒前
英姑应助西尔多采纳,获得10
25秒前
Somnolence咩完成签到,获得积分10
27秒前
27秒前
123完成签到,获得积分10
28秒前
jason发布了新的文献求助30
28秒前
29秒前
30秒前
善学以致用应助123采纳,获得10
32秒前
啦啦啦完成签到 ,获得积分10
34秒前
代传芬发布了新的文献求助10
34秒前
34秒前
zhoushishan发布了新的文献求助10
36秒前
36秒前
SciGPT应助roro熊采纳,获得10
38秒前
卤肉饭与石榴汁完成签到,获得积分10
39秒前
科目三应助revour采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650580
关于积分的说明 14691851
捐赠科研通 4592480
什么是DOI,文献DOI怎么找? 2519651
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244