Monthly Wind Power Forecasting: Integrated Model Based on Grey Model and Machine Learning

极限学习机 风力发电 指数函数 指数增长 时间序列 可再生能源 风速 气象学 计算机科学 数学 环境科学 计量经济学 统计 工程类 人工智能 人工神经网络 地理 数学分析 电气工程
作者
Xiaohui Gao
出处
期刊:Sustainability [MDPI AG]
卷期号:14 (22): 15403-15403 被引量:4
标识
DOI:10.3390/su142215403
摘要

Wind power generation has been developed rapidly due to rising global interest in renewable clean energy sources. Accurate prediction of the potential amount of such energy is of great significance to energy development. As wind changes greatly by season, time series analysis is considered as a natural approach to characterize the seasonal fluctuation and exponential growth. In this paper, a dual integrated hybrid model is presented by using random forest (RF) to incorporate the extreme gradient boosting (XGB) with empirical mode decomposition (EMD) and a fractional order accumulation seasonal grey model (FSGM). For seasonal fluctuation in vertical dimension processing, the time series is decomposed into high and low frequency components. Then, high and low frequency components are predicted by XGB and extreme learning machine (ELM), respectively. For the exponential growth in horizontal dimension processing, the FSGM is applied in the same month in different years. Consequently, the proposed model can not only be used to capture the exponential growth trend but also investigate the complex high-frequency variation. To validate the model, it is applied to analyze the characteristics of wind power time series for China from 2010 to 2020, and the analysis results from the model are compared with popularly known models; the results illustrate that the proposed model is superior to other models in examining the characteristics of the wind power time series.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
叶子完成签到,获得积分10
1秒前
斯文败类应助火鸟采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
lunlun发布了新的文献求助10
1秒前
DongNingGao完成签到 ,获得积分10
1秒前
CodeCraft应助独特的高山采纳,获得10
2秒前
2秒前
小巧的寻双完成签到,获得积分10
2秒前
可爱的函函应助白瑾采纳,获得10
2秒前
开朗满天发布了新的文献求助10
2秒前
YANG完成签到,获得积分20
3秒前
萍苹平发布了新的文献求助10
3秒前
xtdexy发布了新的文献求助10
3秒前
复杂的踏歌完成签到,获得积分10
3秒前
坚定的谷秋完成签到,获得积分10
3秒前
cc完成签到,获得积分20
3秒前
晴空发布了新的文献求助10
4秒前
kaiyi发布了新的文献求助10
5秒前
R18686226306发布了新的文献求助10
5秒前
虚幻如容完成签到,获得积分10
5秒前
可靠板栗完成签到,获得积分10
5秒前
6秒前
6秒前
zanie完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
bkagyin应助Harry采纳,获得10
7秒前
8秒前
8秒前
研友_VZG7GZ应助魔幻的泽洋采纳,获得10
10秒前
DimYoung发布了新的文献求助10
10秒前
zhw发布了新的文献求助10
11秒前
没所谓完成签到,获得积分10
11秒前
luoshiyi发布了新的文献求助10
11秒前
11秒前
jasmine完成签到,获得积分10
12秒前
深情安青应助michael采纳,获得10
12秒前
传奇3应助萍苹平采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914