Monthly Wind Power Forecasting: Integrated Model Based on Grey Model and Machine Learning

极限学习机 风力发电 指数函数 指数增长 时间序列 可再生能源 风速 气象学 计算机科学 数学 环境科学 计量经济学 统计 工程类 人工智能 人工神经网络 地理 数学分析 电气工程
作者
Xiaohui Gao
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:14 (22): 15403-15403 被引量:4
标识
DOI:10.3390/su142215403
摘要

Wind power generation has been developed rapidly due to rising global interest in renewable clean energy sources. Accurate prediction of the potential amount of such energy is of great significance to energy development. As wind changes greatly by season, time series analysis is considered as a natural approach to characterize the seasonal fluctuation and exponential growth. In this paper, a dual integrated hybrid model is presented by using random forest (RF) to incorporate the extreme gradient boosting (XGB) with empirical mode decomposition (EMD) and a fractional order accumulation seasonal grey model (FSGM). For seasonal fluctuation in vertical dimension processing, the time series is decomposed into high and low frequency components. Then, high and low frequency components are predicted by XGB and extreme learning machine (ELM), respectively. For the exponential growth in horizontal dimension processing, the FSGM is applied in the same month in different years. Consequently, the proposed model can not only be used to capture the exponential growth trend but also investigate the complex high-frequency variation. To validate the model, it is applied to analyze the characteristics of wind power time series for China from 2010 to 2020, and the analysis results from the model are compared with popularly known models; the results illustrate that the proposed model is superior to other models in examining the characteristics of the wind power time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助STP顶峰相见采纳,获得10
1秒前
1秒前
Ww完成签到,获得积分10
1秒前
咩啊咩吖发布了新的文献求助10
1秒前
NexusExplorer应助Li采纳,获得10
2秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得20
3秒前
Koalas应助Stroeve采纳,获得20
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
青青完成签到 ,获得积分10
4秒前
4秒前
Tracy完成签到,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
Jasper应助科研通管家采纳,获得30
4秒前
5秒前
5秒前
6秒前
科研通AI6应助段李莲采纳,获得10
7秒前
HNDuan发布了新的文献求助50
7秒前
yzy关注了科研通微信公众号
8秒前
等待的鸡翅完成签到 ,获得积分10
9秒前
9秒前
风中兰完成签到,获得积分10
9秒前
无私黄豆发布了新的文献求助30
9秒前
传奇3应助等待的醉蓝采纳,获得10
10秒前
阿冰冰冰冰冰冰完成签到,获得积分10
12秒前
镜哥完成签到,获得积分10
12秒前
整齐千柳完成签到,获得积分10
12秒前
LN发布了新的文献求助10
13秒前
众生平等发布了新的文献求助10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226204
求助须知:如何正确求助?哪些是违规求助? 4397787
关于积分的说明 13687311
捐赠科研通 4262249
什么是DOI,文献DOI怎么找? 2339037
邀请新用户注册赠送积分活动 1336434
关于科研通互助平台的介绍 1292428