Monthly Wind Power Forecasting: Integrated Model Based on Grey Model and Machine Learning

极限学习机 风力发电 指数函数 指数增长 时间序列 可再生能源 风速 气象学 计算机科学 数学 环境科学 计量经济学 统计 工程类 人工智能 人工神经网络 地理 数学分析 电气工程
作者
Xiaohui Gao
出处
期刊:Sustainability [MDPI AG]
卷期号:14 (22): 15403-15403 被引量:4
标识
DOI:10.3390/su142215403
摘要

Wind power generation has been developed rapidly due to rising global interest in renewable clean energy sources. Accurate prediction of the potential amount of such energy is of great significance to energy development. As wind changes greatly by season, time series analysis is considered as a natural approach to characterize the seasonal fluctuation and exponential growth. In this paper, a dual integrated hybrid model is presented by using random forest (RF) to incorporate the extreme gradient boosting (XGB) with empirical mode decomposition (EMD) and a fractional order accumulation seasonal grey model (FSGM). For seasonal fluctuation in vertical dimension processing, the time series is decomposed into high and low frequency components. Then, high and low frequency components are predicted by XGB and extreme learning machine (ELM), respectively. For the exponential growth in horizontal dimension processing, the FSGM is applied in the same month in different years. Consequently, the proposed model can not only be used to capture the exponential growth trend but also investigate the complex high-frequency variation. To validate the model, it is applied to analyze the characteristics of wind power time series for China from 2010 to 2020, and the analysis results from the model are compared with popularly known models; the results illustrate that the proposed model is superior to other models in examining the characteristics of the wind power time series.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaochanglu发布了新的文献求助10
刚刚
EpQAQ完成签到,获得积分10
刚刚
淡淡的方盒完成签到,获得积分10
刚刚
毕长富完成签到,获得积分10
刚刚
Jared应助doby飞飞采纳,获得10
刚刚
刚刚
1秒前
lululala发布了新的文献求助10
1秒前
Wind应助小树一一采纳,获得10
1秒前
李小鑫吖完成签到,获得积分10
1秒前
我是老大应助李德芙采纳,获得30
1秒前
2秒前
郁乾完成签到,获得积分10
2秒前
2秒前
今后应助天真绿采纳,获得10
2秒前
3秒前
顺利的雪莲完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
buyi完成签到 ,获得积分10
4秒前
4秒前
好吗好的应助ZhenyuShang采纳,获得10
5秒前
爱吃糖的虎纹猫咪完成签到,获得积分10
5秒前
科研通AI6应助chai采纳,获得10
5秒前
梁跃耀发布了新的文献求助20
5秒前
5秒前
duduying发布了新的文献求助30
6秒前
我是老大应助尧肙采纳,获得10
6秒前
大力沛萍发布了新的文献求助10
6秒前
大模型应助怡然百川采纳,获得10
6秒前
WenTang完成签到,获得积分10
6秒前
狂野善愁发布了新的文献求助10
7秒前
fjaa发布了新的文献求助10
7秒前
俊逸芸遥完成签到,获得积分10
7秒前
不吃芒果发布了新的文献求助10
7秒前
老福贵儿应助小雨转晴采纳,获得10
7秒前
7秒前
小蘑菇应助sxx采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271