Monthly Wind Power Forecasting: Integrated Model Based on Grey Model and Machine Learning

极限学习机 风力发电 指数函数 指数增长 时间序列 可再生能源 风速 气象学 计算机科学 数学 环境科学 计量经济学 统计 工程类 人工智能 人工神经网络 地理 数学分析 电气工程
作者
Xiaohui Gao
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:14 (22): 15403-15403 被引量:4
标识
DOI:10.3390/su142215403
摘要

Wind power generation has been developed rapidly due to rising global interest in renewable clean energy sources. Accurate prediction of the potential amount of such energy is of great significance to energy development. As wind changes greatly by season, time series analysis is considered as a natural approach to characterize the seasonal fluctuation and exponential growth. In this paper, a dual integrated hybrid model is presented by using random forest (RF) to incorporate the extreme gradient boosting (XGB) with empirical mode decomposition (EMD) and a fractional order accumulation seasonal grey model (FSGM). For seasonal fluctuation in vertical dimension processing, the time series is decomposed into high and low frequency components. Then, high and low frequency components are predicted by XGB and extreme learning machine (ELM), respectively. For the exponential growth in horizontal dimension processing, the FSGM is applied in the same month in different years. Consequently, the proposed model can not only be used to capture the exponential growth trend but also investigate the complex high-frequency variation. To validate the model, it is applied to analyze the characteristics of wind power time series for China from 2010 to 2020, and the analysis results from the model are compared with popularly known models; the results illustrate that the proposed model is superior to other models in examining the characteristics of the wind power time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhengxinyang完成签到,获得积分10
刚刚
Smiling应助元谷雪采纳,获得10
1秒前
Ya发布了新的文献求助10
1秒前
张小仙发布了新的文献求助10
2秒前
3秒前
willa完成签到,获得积分10
3秒前
you发布了新的文献求助10
3秒前
3秒前
典雅碧空发布了新的文献求助10
4秒前
czh应助落寞依玉采纳,获得10
4秒前
4秒前
球球了发布了新的文献求助10
5秒前
5秒前
6秒前
178181发布了新的文献求助10
6秒前
wiwi发布了新的文献求助30
6秒前
6秒前
酷波er应助天真的宝马采纳,获得10
7秒前
无限小珍完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
LY发布了新的文献求助10
9秒前
GUAN发布了新的文献求助10
9秒前
12214完成签到,获得积分10
9秒前
9秒前
天天快乐应助大马猴采纳,获得10
9秒前
教授王发布了新的文献求助200
9秒前
10秒前
10秒前
10秒前
10秒前
安清发布了新的文献求助30
10秒前
yygz0703发布了新的文献求助10
11秒前
坦率的匪应助弗兰奇将军采纳,获得10
11秒前
12秒前
赘婿应助smin采纳,获得10
12秒前
12秒前
easy发布了新的文献求助10
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113