高碘酸盐
催化作用
化学
生物炭
碳纤维
氧化还原
炭黑
降级(电信)
光化学
无机化学
材料科学
有机化学
天然橡胶
复合材料
热解
复合数
电信
计算机科学
作者
Xiang Ling,Eydhah Almatrafi,Hailan Yang,Haoyang Ye,Fanzhi Qin,Huan Yi,Yang Yang,Xiuqin Huo,Xia Wu,Hong Li,Ming Yan,Chengyun Zhou,Guangming Zeng,Xiaofei Tan
标识
DOI:10.1016/j.cej.2022.140560
摘要
The vital roles of synergetic carbon structure and iron species in periodate (PI)-based oxidation reaction remains unclear. In this study, multiple active species were identified as Fe(IV), 1O2, •O2−, and IO3• in the magnetic ferrite-modified biochar (MFBC)/PI process. The MFBC/PI system maintained stable degradation efficiency under wide pH ranges and the presence of various interfering anions. A unique continuous cycle experiment verifies the contribution of iron leaching-precipitation equilibrium and redox equilibrium to the degradation efficiency of PI/MFBC system. Moreover, except carbonyl functional groups (CO) on biochar could activate PI, the interacted biochar-Fe provides an active site dispersion and fast electron transfer. The attack sites and degradation pathways on DDA were determined with DFT, P and S atoms on diphenylamine dithiophosphoric acid (DDA) were suggested to be the most active sites in MFBC/PI systems. Overall, this work investigated the mechanism of PI activation by the synergistic metal–carbon at the solid–liquid interface of heterogeneous catalysts, would provide a new perspective into the catalytic activation of PI by iron-carbon composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI