亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Autoencoder Neural Network-Based STAP Algorithm for Airborne Radar with Inadequate Training Samples

杂乱 自编码 雷达 协方差矩阵 计算机科学 空时自适应处理 维数(图论) 算法 人工智能 人工神经网络 基质(化学分析) 趋同(经济学) 噪音(视频) 模式识别(心理学) 机器学习 数学 雷达工程细节 雷达成像 电信 图像(数学) 复合材料 经济 经济增长 材料科学 纯数学
作者
Jing Liu,Guisheng Liao,Jingwei Xu,Shengqi Zhu,Filbert H. Juwono,Cao Zeng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 6021-6021 被引量:3
标识
DOI:10.3390/rs14236021
摘要

Clutter suppression is a key problem for airborne radar, and space-time adaptive processing (STAP) is a core technology for clutter suppression and moving target detection. However, in practical applications, the non-uniform time-varying environments including clutter range dependence for non-side-looking radar lead to the training samples being unable to satisfy the sample requirements of STAP that they should be independent identical distributed (IID) and that their number should be greater than twice the system’s degree of freedom (DOF). The lack of sufficient IID training samples causes difficulty in the convergence of STAP and further results in a serious degeneration of performance. To overcome this problem, this paper proposes a novel autoencoder neural network for clutter suppression with a unique matrix designed to be decoded and encoded. The main challenges are improving the accuracy of the estimation of the clutter-plus-noise covariance matrix (CNCM) for STAP convergence, designing the form of the data input to the network, and making the network successfully explored to the improvement of CNCM. For these challenges, the main proposed solutions include designing a unique matrix with a certain dimension and a series of covariance data selections and matrix transformations. Consequently, the proposed method compresses and retains the characteristics of the covariances, and abandons the deviations caused by the non-uniformity and the deficiency of training samples. Specifically, the proposed method firstly develops a unique matrix whose dimension is less than half of the DOF, meanwhile, it is based on a processing of the selected clutter-plus-noise covariances. Then, an autoencoder neural network with l2 regularization and the sparsity regularization is proposed for the unique matrix to be decoded and encoded. The training of the proposed autoencoder can be achieved by reducing the total loss function with the gradient descent iterations. Finally, an inverted processing for the autoencoder output is designed for the reconstruct ion of the clutter-plus-noise covariances. Simulation results are used to verify the effectiveness and advantages of the proposed method. It performs obviously superior clutter suppression for both side-looking and non-side-looking radars with strong clutter, and can deal with the insufficient and the non-uniform training samples. For these conditions, the proposed method provides the relatively narrowest and deepest IF notch. Furthermore, on average it improves the improvement factor (IF) by 10 dB more than the ADC, DW, JDL, and original STAP methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助WRX采纳,获得10
2秒前
冉亦完成签到,获得积分10
10秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
无花果应助科研圈外人采纳,获得30
32秒前
33秒前
37秒前
44秒前
49秒前
科研通AI5应助lvchenhang采纳,获得10
58秒前
归尘发布了新的文献求助10
1分钟前
1分钟前
Ava应助Candy采纳,获得10
1分钟前
1分钟前
cheney完成签到 ,获得积分10
1分钟前
Ava应助Danielwill采纳,获得10
1分钟前
1分钟前
wanci应助科研通管家采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
SciGPT应助一木采纳,获得10
2分钟前
2分钟前
2分钟前
明天完成签到,获得积分10
2分钟前
2分钟前
Danielwill发布了新的文献求助10
2分钟前
一木发布了新的文献求助10
2分钟前
2分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
搜集达人应助Danielwill采纳,获得10
3分钟前
3分钟前
lvchenhang发布了新的文献求助10
3分钟前
drughunter009完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
3分钟前
隐形曼青应助lvchenhang采纳,获得10
3分钟前
Danielwill发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983737
求助须知:如何正确求助?哪些是违规求助? 4234884
关于积分的说明 13189513
捐赠科研通 4027292
什么是DOI,文献DOI怎么找? 2203097
邀请新用户注册赠送积分活动 1215330
关于科研通互助平台的介绍 1132501