Autoencoder Neural Network-Based STAP Algorithm for Airborne Radar with Inadequate Training Samples

杂乱 自编码 雷达 协方差矩阵 计算机科学 空时自适应处理 维数(图论) 算法 人工智能 人工神经网络 基质(化学分析) 趋同(经济学) 噪音(视频) 模式识别(心理学) 机器学习 数学 雷达工程细节 雷达成像 电信 材料科学 图像(数学) 纯数学 经济 复合材料 经济增长
作者
Jing Liu,Guisheng Liao,Jingwei Xu,Shengqi Zhu,Filbert H. Juwono,Cao Zeng
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (23): 6021-6021 被引量:3
标识
DOI:10.3390/rs14236021
摘要

Clutter suppression is a key problem for airborne radar, and space-time adaptive processing (STAP) is a core technology for clutter suppression and moving target detection. However, in practical applications, the non-uniform time-varying environments including clutter range dependence for non-side-looking radar lead to the training samples being unable to satisfy the sample requirements of STAP that they should be independent identical distributed (IID) and that their number should be greater than twice the system’s degree of freedom (DOF). The lack of sufficient IID training samples causes difficulty in the convergence of STAP and further results in a serious degeneration of performance. To overcome this problem, this paper proposes a novel autoencoder neural network for clutter suppression with a unique matrix designed to be decoded and encoded. The main challenges are improving the accuracy of the estimation of the clutter-plus-noise covariance matrix (CNCM) for STAP convergence, designing the form of the data input to the network, and making the network successfully explored to the improvement of CNCM. For these challenges, the main proposed solutions include designing a unique matrix with a certain dimension and a series of covariance data selections and matrix transformations. Consequently, the proposed method compresses and retains the characteristics of the covariances, and abandons the deviations caused by the non-uniformity and the deficiency of training samples. Specifically, the proposed method firstly develops a unique matrix whose dimension is less than half of the DOF, meanwhile, it is based on a processing of the selected clutter-plus-noise covariances. Then, an autoencoder neural network with l2 regularization and the sparsity regularization is proposed for the unique matrix to be decoded and encoded. The training of the proposed autoencoder can be achieved by reducing the total loss function with the gradient descent iterations. Finally, an inverted processing for the autoencoder output is designed for the reconstruct ion of the clutter-plus-noise covariances. Simulation results are used to verify the effectiveness and advantages of the proposed method. It performs obviously superior clutter suppression for both side-looking and non-side-looking radars with strong clutter, and can deal with the insufficient and the non-uniform training samples. For these conditions, the proposed method provides the relatively narrowest and deepest IF notch. Furthermore, on average it improves the improvement factor (IF) by 10 dB more than the ADC, DW, JDL, and original STAP methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴帅哥完成签到,获得积分10
1秒前
3秒前
aslink完成签到,获得积分10
3秒前
Amon完成签到,获得积分10
3秒前
啊娴仔发布了新的文献求助10
3秒前
camellia发布了新的文献求助10
3秒前
万能图书馆应助狂野觅云采纳,获得10
3秒前
充电宝应助zino采纳,获得10
4秒前
4秒前
小可发布了新的文献求助10
4秒前
英姑应助酷酷的起眸采纳,获得10
5秒前
Blue_Pig发布了新的文献求助10
5秒前
科研小白完成签到,获得积分10
6秒前
sooya发布了新的文献求助20
7秒前
7秒前
tiddler完成签到,获得积分10
7秒前
科研通AI2S应助滴滴采纳,获得10
7秒前
wgx完成签到,获得积分20
7秒前
8秒前
爱静静应助Keep采纳,获得10
8秒前
8秒前
8秒前
小马甲应助韭菜采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
机智的白猫完成签到,获得积分10
9秒前
李健的小迷弟应助xxx采纳,获得10
9秒前
杜杜完成签到,获得积分10
9秒前
NexusExplorer应助新的心跳采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
JamesPei应助小可采纳,获得10
11秒前
粗暴的醉卉完成签到,获得积分10
11秒前
11秒前
科研通AI5应助stt采纳,获得10
12秒前
sunzhiyu233发布了新的文献求助10
13秒前
13秒前
缓缓地安静关注了科研通微信公众号
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759