Autoencoder Neural Network-Based STAP Algorithm for Airborne Radar with Inadequate Training Samples

杂乱 自编码 雷达 协方差矩阵 计算机科学 空时自适应处理 维数(图论) 算法 人工智能 人工神经网络 基质(化学分析) 趋同(经济学) 噪音(视频) 模式识别(心理学) 机器学习 数学 雷达工程细节 雷达成像 电信 材料科学 图像(数学) 纯数学 经济 复合材料 经济增长
作者
Jing Liu,Guisheng Liao,Jingwei Xu,Shengqi Zhu,Filbert H. Juwono,Cao Zeng
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (23): 6021-6021 被引量:3
标识
DOI:10.3390/rs14236021
摘要

Clutter suppression is a key problem for airborne radar, and space-time adaptive processing (STAP) is a core technology for clutter suppression and moving target detection. However, in practical applications, the non-uniform time-varying environments including clutter range dependence for non-side-looking radar lead to the training samples being unable to satisfy the sample requirements of STAP that they should be independent identical distributed (IID) and that their number should be greater than twice the system’s degree of freedom (DOF). The lack of sufficient IID training samples causes difficulty in the convergence of STAP and further results in a serious degeneration of performance. To overcome this problem, this paper proposes a novel autoencoder neural network for clutter suppression with a unique matrix designed to be decoded and encoded. The main challenges are improving the accuracy of the estimation of the clutter-plus-noise covariance matrix (CNCM) for STAP convergence, designing the form of the data input to the network, and making the network successfully explored to the improvement of CNCM. For these challenges, the main proposed solutions include designing a unique matrix with a certain dimension and a series of covariance data selections and matrix transformations. Consequently, the proposed method compresses and retains the characteristics of the covariances, and abandons the deviations caused by the non-uniformity and the deficiency of training samples. Specifically, the proposed method firstly develops a unique matrix whose dimension is less than half of the DOF, meanwhile, it is based on a processing of the selected clutter-plus-noise covariances. Then, an autoencoder neural network with l2 regularization and the sparsity regularization is proposed for the unique matrix to be decoded and encoded. The training of the proposed autoencoder can be achieved by reducing the total loss function with the gradient descent iterations. Finally, an inverted processing for the autoencoder output is designed for the reconstruct ion of the clutter-plus-noise covariances. Simulation results are used to verify the effectiveness and advantages of the proposed method. It performs obviously superior clutter suppression for both side-looking and non-side-looking radars with strong clutter, and can deal with the insufficient and the non-uniform training samples. For these conditions, the proposed method provides the relatively narrowest and deepest IF notch. Furthermore, on average it improves the improvement factor (IF) by 10 dB more than the ADC, DW, JDL, and original STAP methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lww123发布了新的文献求助10
1秒前
勤劳的颤完成签到 ,获得积分10
4秒前
锅包肉完成签到 ,获得积分10
7秒前
初夏完成签到 ,获得积分10
7秒前
忍冬完成签到,获得积分10
11秒前
aaa0001984完成签到,获得积分0
11秒前
Telomere完成签到 ,获得积分10
11秒前
ddddduan完成签到 ,获得积分0
14秒前
15秒前
小姜完成签到,获得积分10
17秒前
sophia完成签到 ,获得积分10
20秒前
Qiao完成签到 ,获得积分10
22秒前
酷波er应助sylnd126采纳,获得10
24秒前
Akim应助忍冬采纳,获得10
25秒前
lww123完成签到,获得积分10
25秒前
欣喜的薯片完成签到 ,获得积分10
27秒前
zcg完成签到,获得积分10
28秒前
Xiao10105830完成签到,获得积分10
30秒前
qks完成签到 ,获得积分10
30秒前
缓慢冥幽完成签到 ,获得积分10
30秒前
战场原荡漾完成签到,获得积分10
36秒前
HXL完成签到 ,获得积分10
42秒前
坚强的元瑶完成签到,获得积分10
45秒前
CLTTTt完成签到,获得积分10
54秒前
GuangboXia完成签到,获得积分10
56秒前
所所应助行云流水采纳,获得20
58秒前
生言生语完成签到,获得积分10
1分钟前
zjq完成签到 ,获得积分10
1分钟前
Hosea完成签到 ,获得积分10
1分钟前
Jasmineyfz完成签到 ,获得积分10
1分钟前
研友_ZegMrL完成签到,获得积分10
1分钟前
fengfenghao完成签到 ,获得积分10
1分钟前
猪仔5号完成签到 ,获得积分10
1分钟前
1分钟前
沙与沫完成签到 ,获得积分10
1分钟前
haonanchen完成签到,获得积分10
1分钟前
飞快的冰淇淋完成签到 ,获得积分10
1分钟前
兴奋元灵完成签到 ,获得积分10
1分钟前
李东东完成签到 ,获得积分10
1分钟前
为你等候完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155031
求助须知:如何正确求助?哪些是违规求助? 2805746
关于积分的说明 7865951
捐赠科研通 2464038
什么是DOI,文献DOI怎么找? 1311698
科研通“疑难数据库(出版商)”最低求助积分说明 629734
版权声明 601862