Multi-task multi-scale learning for outcome prediction in 3D PET images

计算机科学 杠杆(统计) 人工智能 机器学习 无线电技术 任务(项目管理) 深度学习 多任务学习 分割 编码器 领域(数学) 比例(比率) 模式识别(心理学) 操作系统 物理 量子力学 经济 管理 纯数学 数学
作者
Amine Amyar,Romain Modzelewski,Pierre Véra,Vincent Morard,Su Ruan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106208-106208 被引量:15
标识
DOI:10.1016/j.compbiomed.2022.106208
摘要

Predicting patient response to treatment and survival in oncology is a prominent way towards precision medicine. To this end, radiomics has been proposed as a field of study where images are used instead of invasive methods. The first step in radiomic analysis in oncology is lesion segmentation. However, this task is time consuming and can be physician subjective. Automated tools based on supervised deep learning have made great progress in helping physicians. However, they are data hungry, and annotated data remains a major issue in the medical field where only a small subset of annotated images are available. In this work, we propose a multi-task, multi-scale learning framework to predict patient's survival and response. We show that the encoder can leverage multiple tasks to extract meaningful and powerful features that improve radiomic performance. We also show that subsidiary tasks serve as an inductive bias so that the model can better generalize. Our model was tested and validated for treatment response and survival in esophageal and lung cancers, with an area under the ROC curve of 77% and 71% respectively, outperforming single-task learning methods. Multi-task multi-scale learning enables higher performance of radiomic analysis by extracting rich information from intratumoral and peritumoral regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
刚刚
科研通AI6应助长情的书雁采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
lilili应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得30
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大模型应助橘子采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
思源应助风到这里就是年采纳,获得10
1秒前
meng完成签到,获得积分10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
2秒前
默己关注了科研通微信公众号
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
bkagyin应助乐乐采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
奋斗若雁完成签到,获得积分10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Hilda007应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
wowser完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016698
求助须知:如何正确求助?哪些是违规求助? 4256677
关于积分的说明 13265866
捐赠科研通 4060670
什么是DOI,文献DOI怎么找? 2220985
邀请新用户注册赠送积分活动 1230264
关于科研通互助平台的介绍 1152852