Multi-task multi-scale learning for outcome prediction in 3D PET images

计算机科学 杠杆(统计) 人工智能 机器学习 无线电技术 任务(项目管理) 深度学习 多任务学习 分割 编码器 领域(数学) 比例(比率) 模式识别(心理学) 操作系统 物理 量子力学 经济 管理 纯数学 数学
作者
Amine Amyar,Romain Modzelewski,Pierre Véra,Vincent Morard,Su Ruan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106208-106208 被引量:15
标识
DOI:10.1016/j.compbiomed.2022.106208
摘要

Predicting patient response to treatment and survival in oncology is a prominent way towards precision medicine. To this end, radiomics has been proposed as a field of study where images are used instead of invasive methods. The first step in radiomic analysis in oncology is lesion segmentation. However, this task is time consuming and can be physician subjective. Automated tools based on supervised deep learning have made great progress in helping physicians. However, they are data hungry, and annotated data remains a major issue in the medical field where only a small subset of annotated images are available. In this work, we propose a multi-task, multi-scale learning framework to predict patient's survival and response. We show that the encoder can leverage multiple tasks to extract meaningful and powerful features that improve radiomic performance. We also show that subsidiary tasks serve as an inductive bias so that the model can better generalize. Our model was tested and validated for treatment response and survival in esophageal and lung cancers, with an area under the ROC curve of 77% and 71% respectively, outperforming single-task learning methods. Multi-task multi-scale learning enables higher performance of radiomic analysis by extracting rich information from intratumoral and peritumoral regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
allia完成签到 ,获得积分10
1秒前
山顶的望眼镜完成签到,获得积分10
2秒前
苏78完成签到,获得积分20
4秒前
5秒前
6秒前
Sicecream完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
10秒前
寻舟者完成签到,获得积分10
11秒前
tufuczy发布了新的文献求助10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
emmm发布了新的文献求助10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
ED应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得20
13秒前
卡卡西应助科研通管家采纳,获得20
13秒前
13秒前
13秒前
小亮哈哈发布了新的文献求助10
15秒前
Zirong发布了新的文献求助10
15秒前
分析发布了新的文献求助20
17秒前
18秒前
ytrewq完成签到 ,获得积分10
18秒前
20秒前
文艺不凡完成签到,获得积分10
23秒前
gzj发布了新的文献求助10
24秒前
24秒前
叶y发布了新的文献求助10
24秒前
Angenstern完成签到 ,获得积分10
28秒前
泽灵发布了新的文献求助50
30秒前
xmk完成签到 ,获得积分10
30秒前
隐形曼青应助xixixixi采纳,获得10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150