Catalytic activity enhancement by P and S co-doping of a single-atom Fe catalyst for peroxymonosulfate-based oxidation

催化作用 化学 杂原子 降级(电信) 反应速率常数 过氧化物 电子转移 无机化学 光化学 动力学 有机化学 计算机科学 戒指(化学) 电信 物理 量子力学
作者
Li Yin,Jiahui Hu,Yubin Zou,Lin Lin,Hebin Liang,Huaxin Lei,Bing Li,Xiaoyan Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:453: 139890-139890 被引量:36
标识
DOI:10.1016/j.cej.2022.139890
摘要

High-valent iron–oxo species (FeV=O) generated through peroxide activation by Fe-based catalysts can realize the selective and efficient degradation of organic pollutants in water treatment. However, the rapid and efficient generation of FeV=O for the selective degradation of pollutants over a wide pH range with high stability is challenging. In this study, a N, P, and S co-doped Fe-single atom (SA) catalyst (FeSA[email protected]) with FeN4 active center was synthesized as a highly efficient catalyst for the peroxymonosulfate (PMS)-based oxidation. The FeSA[email protected] catalyst exhibited an excellent catalytic performance at low dosages of both the catalyst and PMS for the degradation of pollutants over a wide pH range with high stability. For the degradation of ofloxacin (OFX), the rate constant pertaining to PMS with FeSA[email protected] was 1.68 min−1, considerably higher than those obtained using the N-doped and N and P co-doped Fe-SA catalysts. The degradation pathway of OFX revealed that the electrostatic effect was of significance in its degradation by FeVN4=O with FeVN4=O being the dominant reactive species. Density functional theory calculations revealed that the heteroatom doping effectively altered the electronic structure of the FeN4 site of FeSA[email protected], which strengthen its coordination with PMS, promote the electron transfer to PMS, and facilitate the interaction between FeVN4 = O and OFX, and thus significantly enhanced its catalytic activity. These findings provide new insights into the oxidation mechanism of FeV=O in heterogeneous systems and the catalytic ability enhancement through heteroatom doping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
殇春秋发布了新的文献求助10
1秒前
Leo完成签到,获得积分20
1秒前
共享精神应助Hi采纳,获得10
1秒前
2秒前
2秒前
Mztt发布了新的文献求助20
2秒前
2秒前
2秒前
gaon发布了新的文献求助10
2秒前
2秒前
3秒前
归尘发布了新的文献求助100
3秒前
3秒前
Leo发布了新的文献求助10
4秒前
王叮叮发布了新的文献求助10
4秒前
4秒前
431564完成签到,获得积分10
4秒前
HYZ发布了新的文献求助10
5秒前
17868992327完成签到,获得积分10
5秒前
深情笑翠完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
无限曲奇发布了新的文献求助10
6秒前
甜叶菊完成签到,获得积分10
6秒前
7秒前
易安发布了新的文献求助10
7秒前
www发布了新的文献求助10
7秒前
科研通AI6应助LJZ采纳,获得10
7秒前
深情笑翠发布了新的文献求助10
7秒前
打打应助超级面包采纳,获得10
8秒前
无花果应助忧郁的沁采纳,获得10
8秒前
8秒前
9秒前
sam1514发布了新的文献求助10
9秒前
9秒前
9秒前
Lntano发布了新的文献求助10
9秒前
slouchy发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647471
求助须知:如何正确求助?哪些是违规求助? 4773575
关于积分的说明 15039580
捐赠科研通 4806177
什么是DOI,文献DOI怎么找? 2570137
邀请新用户注册赠送积分活动 1527027
关于科研通互助平台的介绍 1486108