Catalytic activity enhancement by P and S co-doping of a single-atom Fe catalyst for peroxymonosulfate-based oxidation

催化作用 化学 杂原子 降级(电信) 反应速率常数 过氧化物 电子转移 无机化学 光化学 动力学 有机化学 计算机科学 量子力学 电信 物理 戒指(化学)
作者
Yin Li,Jiahui Hu,Yan–Rong Zou,Lin Lin,Haowen Liang,Huaxin Lei,Bing Li,Xiaoyan Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:453: 139890-139890 被引量:14
标识
DOI:10.1016/j.cej.2022.139890
摘要

High-valent iron–oxo species (FeV=O) generated through peroxide activation by Fe-based catalysts can realize the selective and efficient degradation of organic pollutants in water treatment. However, the rapid and efficient generation of FeV=O for the selective degradation of pollutants over a wide pH range with high stability is challenging. In this study, a N, P, and S co-doped Fe-single atom (SA) catalyst (FeSA[email protected]) with FeN4 active center was synthesized as a highly efficient catalyst for the peroxymonosulfate (PMS)-based oxidation. The FeSA[email protected] catalyst exhibited an excellent catalytic performance at low dosages of both the catalyst and PMS for the degradation of pollutants over a wide pH range with high stability. For the degradation of ofloxacin (OFX), the rate constant pertaining to PMS with FeSA[email protected] was 1.68 min−1, considerably higher than those obtained using the N-doped and N and P co-doped Fe-SA catalysts. The degradation pathway of OFX revealed that the electrostatic effect was of significance in its degradation by FeVN4=O with FeVN4=O being the dominant reactive species. Density functional theory calculations revealed that the heteroatom doping effectively altered the electronic structure of the FeN4 site of FeSA[email protected], which strengthen its coordination with PMS, promote the electron transfer to PMS, and facilitate the interaction between FeVN4 = O and OFX, and thus significantly enhanced its catalytic activity. These findings provide new insights into the oxidation mechanism of FeV=O in heterogeneous systems and the catalytic ability enhancement through heteroatom doping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zengyiqiao完成签到,获得积分10
刚刚
1秒前
sonokoH发布了新的文献求助10
1秒前
11发布了新的文献求助10
1秒前
2秒前
水产里的遗传完成签到 ,获得积分10
2秒前
叁肆完成签到,获得积分10
2秒前
香蕉觅云应助hao采纳,获得10
2秒前
啊啊完成签到,获得积分20
3秒前
19554133922完成签到,获得积分10
4秒前
QH完成签到,获得积分10
5秒前
zengyiqiao发布了新的文献求助10
5秒前
所所应助调皮万宝路采纳,获得10
5秒前
6秒前
逸yi完成签到,获得积分20
7秒前
QH发布了新的文献求助10
8秒前
8秒前
小蘑菇应助sonokoH采纳,获得10
9秒前
逸yi发布了新的文献求助10
10秒前
完美世界应助11采纳,获得10
11秒前
科研通AI5应助精明平露采纳,获得10
11秒前
d22110652发布了新的文献求助10
11秒前
15秒前
猫宁完成签到,获得积分20
15秒前
失重心跳完成签到,获得积分10
16秒前
整齐的夜安完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
是榤啊发布了新的文献求助10
20秒前
21秒前
爆米花应助静待花开采纳,获得10
21秒前
21秒前
22秒前
炒粉不要放鸡精啊完成签到,获得积分10
22秒前
傅玉全发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475521
求助须知:如何正确求助?哪些是违规求助? 3067434
关于积分的说明 9103960
捐赠科研通 2758870
什么是DOI,文献DOI怎么找? 1513819
邀请新用户注册赠送积分活动 699819
科研通“疑难数据库(出版商)”最低求助积分说明 699163