多硫化物
材料科学
硫黄
电解质
催化作用
锂(药物)
碳纤维
氧化还原
氧化态
化学工程
无机化学
电极
复合材料
冶金
物理化学
有机化学
复合数
化学
内分泌学
工程类
医学
作者
Sha Li,Jiande Lin,Bin Chang,Daiwen Yang,De‐Yin Wu,Junhao Wang,Weijia Zhou,Hong Liu,Shuhui Sun,Li Zhang
标识
DOI:10.1016/j.ensm.2022.11.045
摘要
Lithium-sulfur (Li-S) batteries suffer from soluble lithium polysulfide (LiPS) shuttling and sluggish redox kinetics. The rational design of carbon-supported single-atom catalysts (SACs) as both LiPS immobilizers and sulfur redox promoters is of great significance for high-loading and lean-electrolyte Li-S batteries. However, the most popular nonpolar porphyrin-like transition metal-nitrogen (M-N4) SACs cannot maximize the catalytic activity of the metal center. Herein, a B, N co-coordinated N2-Fe-B2 SAC embedded in a B, N-rich carbon matrix (denoted as Fe SAs@BCN) is disclosed for the first time to construct state-of-the-art Li-S batteries. We reveal experimentally and theoretically that the asymmetric N2-Fe-B2 configuration not only rapidly captures LiPSs through strong Lewis acid-base interactions, but also greatly catalyzes the bidirectional sulfur redox chemistry by lowering the Li2S deposition/decomposition energy barriers. As such, the well-designed SACs enable Li-S batteries to promise extraordinary durability (82% retention over 1000 cycles at 5 C) and high areal capacities even under harsh sulfur mass loadings. More encouragingly, a 359 Wh kg−1 pouch cell with an ultrahigh loading of 11.6 mg·S cm−2 and a lean electrolyte to sulfur (E/S) ratio of 3 µL mg·S−1 is further demonstrated. This work shows that N2-Fe-B2 SACs hold great promise in realizing high-energy-density Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI