Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids

纳米技术 3D生物打印 计算机科学 生物加工 组织工程 再生医学 干细胞 生物 工程类 生物医学工程 细胞生物学 材料科学
作者
Mojtaba Farahani,James Carthew,Sanchyan Bhowmik,Chloé Shard,Ana B. Nunez-Nescolarde,Guillermo A. Gomez,Víctor J. Cadarso,Alexander N. Combes,Jessica E. Frith
出处
期刊:Biointerphases [American Institute of Physics]
卷期号:17 (6) 被引量:1
标识
DOI:10.1116/6.0002034
摘要

The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助Enoch采纳,获得10
刚刚
刚刚
刚刚
刚刚
常常发布了新的文献求助10
刚刚
细心焱关注了科研通微信公众号
1秒前
1秒前
Wwy发布了新的文献求助20
1秒前
孙闹闹发布了新的文献求助10
2秒前
liu完成签到,获得积分10
2秒前
小熊软糖发布了新的文献求助30
3秒前
思源应助黄金矿工采纳,获得10
3秒前
3秒前
3秒前
Alina发布了新的文献求助10
3秒前
3秒前
Wendygogogo完成签到,获得积分10
4秒前
舒适从蓉发布了新的文献求助10
4秒前
袁大头发布了新的文献求助10
4秒前
小王同学完成签到,获得积分20
5秒前
ggsr完成签到 ,获得积分10
5秒前
5秒前
常温完成签到,获得积分10
5秒前
wuyuan完成签到,获得积分10
5秒前
5秒前
waitstill发布了新的文献求助30
6秒前
agont发布了新的文献求助10
6秒前
6秒前
liu发布了新的文献求助10
6秒前
6秒前
52pry完成签到,获得积分10
7秒前
7秒前
情殇发布了新的文献求助10
7秒前
7秒前
刘小白发布了新的文献求助20
7秒前
sun完成签到,获得积分10
7秒前
李清照发布了新的文献求助10
7秒前
7秒前
笛卡尔完成签到,获得积分10
8秒前
hui发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541500
求助须知:如何正确求助?哪些是违规求助? 3118893
关于积分的说明 9337169
捐赠科研通 2816755
什么是DOI,文献DOI怎么找? 1548646
邀请新用户注册赠送积分活动 721597
科研通“疑难数据库(出版商)”最低求助积分说明 712731