亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved local search for the minimum weight dominating set problem in massive graphs by using a deep optimization mechanism

概括性 计算机科学 数学优化 局部最优 集合(抽象数据类型) 一般化 启发式 局部搜索(优化) 算法 还原(数学) 数学 人工智能 几何学 数学分析 心理学 程序设计语言 心理治疗师
作者
Jiejiang Chen,Shaowei Cai,Yiyuan Wang,W. Xu,Jia Ji,Minghao Yin
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:314: 103819-103819 被引量:21
标识
DOI:10.1016/j.artint.2022.103819
摘要

The minimum weight dominating set (MWDS) problem is an important generalization of the minimum dominating set problem with various applications. In this work, we develop an efficient local search scheme that can dynamically adjust the number of added and removed vertices according to the information of the candidate solution. Based on this scheme, we further develop three novel ideas to improve performance, resulting in our so-called DeepOpt-MWDS algorithm. First, we use a new construction method with five reduction rules to significantly reduce massive graphs and construct an initial solution efficiently. Second, an improved configuration checking strategy called CC2V3+ is designed to reduce the cycling phenomenon in local search. Third, a general perturbation framework called deep optimization mechanism (DeepOpt) is proposed to help the algorithm avoid local optima and to converge to a new solution quickly. Extensive experiments based on eight popular benchmarks of different scales are carried out to evaluate the proposed algorithm. Compared to seven state-of-the-art heuristic algorithms, DeepOpt-MWDS performs better on random and classic benchmarks and obtains the best solutions on almost all massive graphs. We investigate three main algorithmic ingredients to understand their impacts on the performance of the proposed algorithm. Moreover, we adapt the proposed general framework DeepOpt to another NP-hard problem to verify its generality and achieve good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alberta完成签到,获得积分10
刚刚
白三完成签到,获得积分10
5秒前
123完成签到 ,获得积分10
6秒前
HTniconico完成签到 ,获得积分10
14秒前
开朗白山完成签到,获得积分10
17秒前
21秒前
jingluo发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
28秒前
彭于晏应助hhh采纳,获得10
32秒前
我主沉浮完成签到,获得积分10
32秒前
33秒前
嘻嘻哈哈应助abc采纳,获得10
34秒前
36秒前
八两发布了新的文献求助10
40秒前
40秒前
40秒前
41秒前
41秒前
42秒前
42秒前
43秒前
43秒前
43秒前
117完成签到,获得积分10
45秒前
hhh发布了新的文献求助10
45秒前
hhh发布了新的文献求助10
46秒前
hhh发布了新的文献求助10
46秒前
hhh发布了新的文献求助10
46秒前
可爱玫瑰发布了新的文献求助10
48秒前
浮游应助inin采纳,获得10
49秒前
1分钟前
西柚柠檬完成签到 ,获得积分10
1分钟前
梓镱儿完成签到,获得积分10
1分钟前
Aulorra完成签到,获得积分20
1分钟前
1分钟前
久久丫完成签到 ,获得积分10
1分钟前
1分钟前
科目三应助zy采纳,获得10
1分钟前
1分钟前
可爱玫瑰完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164