Improved local search for the minimum weight dominating set problem in massive graphs by using a deep optimization mechanism

概括性 计算机科学 数学优化 局部最优 集合(抽象数据类型) 一般化 启发式 局部搜索(优化) 算法 还原(数学) 数学 人工智能 几何学 数学分析 心理学 程序设计语言 心理治疗师
作者
Jiejiang Chen,Shaowei Cai,Yiyuan Wang,W. Xu,Jia Ji,Minghao Yin
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:314: 103819-103819 被引量:21
标识
DOI:10.1016/j.artint.2022.103819
摘要

The minimum weight dominating set (MWDS) problem is an important generalization of the minimum dominating set problem with various applications. In this work, we develop an efficient local search scheme that can dynamically adjust the number of added and removed vertices according to the information of the candidate solution. Based on this scheme, we further develop three novel ideas to improve performance, resulting in our so-called DeepOpt-MWDS algorithm. First, we use a new construction method with five reduction rules to significantly reduce massive graphs and construct an initial solution efficiently. Second, an improved configuration checking strategy called CC2V3+ is designed to reduce the cycling phenomenon in local search. Third, a general perturbation framework called deep optimization mechanism (DeepOpt) is proposed to help the algorithm avoid local optima and to converge to a new solution quickly. Extensive experiments based on eight popular benchmarks of different scales are carried out to evaluate the proposed algorithm. Compared to seven state-of-the-art heuristic algorithms, DeepOpt-MWDS performs better on random and classic benchmarks and obtains the best solutions on almost all massive graphs. We investigate three main algorithmic ingredients to understand their impacts on the performance of the proposed algorithm. Moreover, we adapt the proposed general framework DeepOpt to another NP-hard problem to verify its generality and achieve good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽慕儿发布了新的文献求助10
刚刚
1秒前
ebby发布了新的文献求助10
2秒前
SciGPT应助12采纳,获得10
3秒前
4秒前
5秒前
6秒前
7秒前
7秒前
白羊给白羊的求助进行了留言
7秒前
7秒前
陌回完成签到,获得积分10
8秒前
鲤鱼灵波发布了新的文献求助10
8秒前
allen发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
13秒前
15秒前
漂亮糖豆发布了新的文献求助10
16秒前
17秒前
17秒前
直率的珍完成签到,获得积分10
17秒前
隐形曼青应助燕儿采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
小青椒应助allen采纳,获得30
21秒前
甜甜的平蓝完成签到 ,获得积分10
21秒前
21秒前
22秒前
沐晴发布了新的文献求助10
23秒前
23秒前
陈秋妮发布了新的文献求助10
24秒前
鱼包包发布了新的文献求助10
24秒前
sunny完成签到,获得积分10
24秒前
华仔应助sy采纳,获得10
25秒前
12发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091