催化作用
硫黄
阴极
铁磁性
Atom(片上系统)
电池(电)
锂(药物)
化学
材料科学
无机化学
物理化学
凝聚态物理
热力学
有机化学
物理
嵌入式系统
功率(物理)
内分泌学
医学
计算机科学
作者
Rui Yan,Zhenyang Zhao,Menghao Cheng,Zhao Yang,Chong Cheng,Xikui Liu,Bo Yin,Shuang Li
标识
DOI:10.1002/ange.202215414
摘要
Abstract Accelerating insoluble Li 2 S 2 −Li 2 S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high‐efficient lithium‐sulfur battery cathodes, such as single‐atom catalysts by offering high‐density active sites to realize in situ reaction with solid Li 2 S 2 . However, the profound origin of diverse single‐atom species on solid‐solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li 2 S 2 −Li 2 S reduction catalysis in ferromagnetic elements‐based single‐atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe−N 4 ‐based cathodes exhibit the fastest deposition kinetics of Li 2 S (226 mAh g −1 ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li 2 S 2 −Li 2 S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long‐life batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI