等离子体子
光催化
材料科学
半导体
表面等离子共振
光电子学
可见光谱
贵金属
带隙
纳米颗粒
纳米技术
金属
化学
催化作用
生物化学
冶金
作者
Yunxiang Wang,Buyun Chen,Deming Meng,Boxiang Song,Zerui Liu,Pan Hu,Hao Yang,Tse‐Hsien Ou,Fanxin Liu,Halton Pi,Irene Pi,Isleen Pi,Wei Wu
出处
期刊:Nanomaterials
[Multidisciplinary Digital Publishing Institute]
日期:2022-10-24
卷期号:12 (21): 3730-3730
被引量:8
摘要
Semiconductor photocatalysis has received increasing attention because of its potential to address problems related to the energy crisis and environmental issues. However, conventional semiconductor photocatalysts, such as TiO2 and ZnO, can only be activated by ultraviolet light due to their wide band gap. To extend the light absorption into the visible range, the localized surface plasmon resonance (LSPR) effect of noble metal nanoparticles (NPs) has been widely used. Noble metal NPs can couple incident visible light energy to strong LSPR, and the nonradiative decay of LSPR generates nonthermal hot carriers that can be injected into adjacent semiconductor material to enhance its photocatalytic activity. Here we demonstrate that nanoimprint-defined gap plasmonic nanofinger arrays can function as visible light-driven plasmonic photocatalysts. The sub-5 nm gaps between pairs of collapsed nanofingers can support ultra-strong plasmon resonance and thus boost the population of hot carriers. The semiconductor material is exactly placed at the hot spots, providing an efficient pathway for hot carrier injection from plasmonic metal to catalytic materials. This nanostructure thus exhibits high plasmon-enhanced photocatalytic activity under visible light. The hot carrier injection mechanism of this platform was systematically investigated. The plasmonic enhancement factor was calculated using the finite-difference time-domain (FDTD) method and was consistent with the measured improvement of the photocatalytic activity. This platform, benefiting from the precise controllable geometry, provides a deeper understanding of the mechanism of plasmonic photocatalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI