Triggering Rainfall of Large-Scale Landslides in Taiwan: Statistical Analysis of Satellite Imagery for Early Warning Systems

山崩 台风 比例(比率) 环境科学 预警系统 重采样 线性回归 气象学 地质学 统计 地图学 地理 计算机科学 数学 地震学 电信
作者
Tsai-Tsung Tsai,Yuan-Jung Tsai,Chjeng‐Lun Shieh,John Hsiao-Chung Wang
出处
期刊:Water [MDPI AG]
卷期号:14 (21): 3358-3358 被引量:4
标识
DOI:10.3390/w14213358
摘要

Typhoon Morakot had a serious impact on Taiwan, especially the uncommon type of landslide called large-scale landslide (LSL), not many in number but serious in effect, the origin of which the study induced. To establish a specific relationship between LSL and triggering rainfall for future applications of LSL early warning predictions, relevant cases from satellite imagery, along with field investigation data, major event reports, and seismic data from 2004 to 2016, were collected. All collected cases are distributed around the mountainous area in Taiwan, and a total of 107 cases which were mainly distributed in the southern part of the mountainous area were finally selected, including 28 occurrence-time-known cases and 79 occurrence-time-unknown cases. In addition, 149 potential areas identified by the Soil and Water Conservation Bureau (SWCB) were used for improving bounding estimates. Based on the concept of safety factor, two dimensionless quantities, rainfall/landslide depth (R/D) and friction angle/slope (ϕ/θ), were analyzed by linear regression. In addition, D was assumed to be nonlinearly dependent on R, θ, and ϕ, and the parameter uncertainties were evaluated by the resampling with bootstrap method. Based on the currently obtained data, there were 8% Type-I errors in the results of the linear regression analysis, and 1% Type-II errors in the results of the nonlinear regression analysis. Through the comparison of statistical indicators, the results of nonlinear regression analysis have a better correlation trend. Based on the needs of early warning operations, more conservative indicators can reduce the risks faced by management operations. Therefore, according to the results of this study, the lower boundary values from nonlinear analysis could be used as the LSL early warning management settings. Incorporated with real-time rainfall forecasts, the variation of statistical indicators will provide the trend information dynamically, and will help to increase the response time for relevant evacuation operations, that will be welcome for the further extended applications to guide the evacuation operations of early warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guozizi发布了新的文献求助50
1秒前
派大星完成签到 ,获得积分10
1秒前
mxh完成签到,获得积分10
1秒前
1秒前
外向芹菜完成签到,获得积分10
1秒前
3秒前
shuan发布了新的文献求助30
6秒前
6秒前
8秒前
8秒前
活力思枫完成签到,获得积分10
8秒前
Jasper应助执刀手采纳,获得10
9秒前
9秒前
11秒前
李爱国应助路边一颗小草采纳,获得10
11秒前
刻苦从阳发布了新的文献求助30
13秒前
wll发布了新的文献求助10
13秒前
小美酱发布了新的文献求助10
14秒前
萤火虫果果完成签到,获得积分10
15秒前
sarah完成签到,获得积分10
15秒前
冷酷的天晴应助guozizi采纳,获得30
15秒前
港岛妹妹发布了新的文献求助10
15秒前
zhangscience发布了新的文献求助10
16秒前
Miki完成签到,获得积分10
18秒前
cly完成签到,获得积分10
18秒前
18秒前
瞿冷发布了新的文献求助10
19秒前
意安完成签到,获得积分10
21秒前
JJ完成签到 ,获得积分10
22秒前
23秒前
Gengar完成签到,获得积分10
24秒前
drsunofoph123发布了新的文献求助10
25秒前
沉静怜蕾发布了新的文献求助30
27秒前
wanshuixiaowu173关注了科研通微信公众号
29秒前
akko应助科研通管家采纳,获得10
29秒前
8R60d8应助科研通管家采纳,获得10
29秒前
十一应助科研通管家采纳,获得10
29秒前
xiamu应助科研通管家采纳,获得10
29秒前
8R60d8应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605