霍普夫分叉
数学
正确性
理论(学习稳定性)
戒指(化学)
订单(交换)
分叉
特征方程
区间(图论)
控制理论(社会学)
应用数学
数学分析
拓扑(电路)
计算机科学
微分方程
组合数学
非线性系统
算法
物理
化学
控制(管理)
有机化学
财务
量子力学
机器学习
人工智能
经济
作者
Shuai Li,Chengdai Huang,Xinyu Song
标识
DOI:10.1142/s1793524522501170
摘要
In this paper, we formulate and study a fractional-order network model with four neurons, bidirectional ring structure and self-delay feedback. For the scenario of non-identical neurons, we develop a new algebraic technique to deal with the characteristic equation with [Formula: see text] ([Formula: see text] is the self-feedback delay) term and thus establish the easy-to-check criteria to determine the Hopf bifurcation point of self-feedback delay by fixing communication delay in its stable interval. For the scenario of identical neurons, we apply the crossing curves method to the fractional functional equations and thus procure the Hopf bifurcation curve. The obtained results accommodate the fact that the model cannot preserve its stability behavior when the self-feedback delay crosses the Hopf bifurcation point in the positive direction. Finally, we deliberate on the correctness of our methodology through two demonstration examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI