已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Single-Object Tracker Based on Local-Global Feature Fusion

计算机科学 人工智能 BitTorrent跟踪器 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 眼动 工程类 语言学 电气工程 哲学 电压
作者
Xiaoyu Ni,Liang Yuan,Kai Lv
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1114-1122 被引量:3
标识
DOI:10.1109/tcsvt.2023.3290868
摘要

Since Vision Transformers (ViTs) are introduced into computer vision, they have developed rapidly in a variety of visual tasks. Recently, they have been gradually applied to visual tracking. The Transformer can adaptively capture the global similarity comparisons of target objects and search regions, which has achieved competitive performance results. However, Transformer architectures often require a large amount of training data and computing resources, and lack prior knowledge of inductive biases that existed in images. The advantages of convolutional neural networks (CNNs) in extracting local similarities are not fully exploited. To resolve these problems, we propose a lightweight tracking architecture, combining CNN and Transformer in the feature fusion stage. Specifically, Local-Global Feature Interaction (LGFI) module and Feature Cross-Fusion (FCF) module are the key components in our approach. In the LGFI module, the proposed method includes a Transformer global information network and a Transformer-like CNN local information network for simultaneous global scope dependency establishment and local feature similarity enhancement, then aggregates their feature results together. In the FCF module, the proposed method includes a multi-head cross-attention and a convolutional feedforward network for feature fusion of templates and search regions. Finally, we use the classification and regression head to predict the exact location of the target. Extensive experiments demonstrate that, our method achieves better tracking performance than the baseline method, when both methods are trained with fewer data. Meanwhile, without any extra training data, the proposed method also obtains comparable results with other state-of-the-art trackers on six challenging benchmarks, including GOT-10k, LaSOT, TrackingNet, OTB100, UAV123, and NFS. Furthermore, our model is lightweight compared with the baseline method, with fewer parameters and lower FLOPs, while running at real-time speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助研友_8oBQ3Z采纳,获得10
1秒前
cookie-W发布了新的文献求助10
2秒前
binbin发布了新的文献求助10
3秒前
3秒前
菠萝完成签到 ,获得积分10
5秒前
努力的派大星关注了科研通微信公众号
5秒前
starlight完成签到,获得积分10
6秒前
贾克斯完成签到,获得积分20
6秒前
8秒前
端庄的紫烟完成签到 ,获得积分10
8秒前
雨辰完成签到,获得积分10
9秒前
仁爱糖豆完成签到 ,获得积分10
10秒前
kay完成签到 ,获得积分10
10秒前
10秒前
11秒前
Ava应助左西采纳,获得30
12秒前
酷酷沛白完成签到,获得积分20
13秒前
酷酷尔蓉发布了新的文献求助10
13秒前
wuming完成签到,获得积分10
13秒前
丘比特应助伍明娟采纳,获得10
14秒前
15秒前
小中医发布了新的文献求助10
15秒前
15秒前
cy发布了新的文献求助10
17秒前
叶lo完成签到,获得积分10
18秒前
orixero应助烂漫的绫采纳,获得10
20秒前
zzz发布了新的文献求助10
21秒前
22秒前
22秒前
binbin发布了新的文献求助10
22秒前
23秒前
23秒前
善学以致用应助Jemma采纳,获得10
24秒前
Ava应助愉快的Jerry采纳,获得10
25秒前
25秒前
29秒前
浅梦完成签到,获得积分10
30秒前
30秒前
左西发布了新的文献求助30
30秒前
独特海白完成签到,获得积分10
31秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443487
求助须知:如何正确求助?哪些是违规求助? 4553360
关于积分的说明 14241701
捐赠科研通 4475034
什么是DOI,文献DOI怎么找? 2452187
邀请新用户注册赠送积分活动 1443165
关于科研通互助平台的介绍 1418774