Efficient Single-Object Tracker Based on Local-Global Feature Fusion

计算机科学 人工智能 BitTorrent跟踪器 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 眼动 工程类 语言学 哲学 电压 电气工程
作者
Xian-Qiang Ni,Yuan Liu,Kai Lv
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcsvt.2023.3290868
摘要

Since Vision Transformers (ViTs) are introduced into computer vision, they have developed rapidly in a variety of visual tasks. Recently, they have been gradually applied to visual tracking. The Transformer can adaptively capture the global similarity comparisons of target objects and search regions, which has achieved competitive performance results. However, Transformer architectures often require a large amount of training data and computing resources, and lack prior knowledge of inductive biases that existed in images. The advantages of convolutional neural networks (CNNs) in extracting local similarities are not fully exploited. To resolve these problems, we propose a lightweight tracking architecture, combining CNN and Transformer in the feature fusion stage. Specifically, Local-Global Feature Interaction (LGFI) module and Feature Cross-Fusion (FCF) module are the key components in our approach. In the LGFI module, the proposed method includes a Transformer global information network and a Transformer-like CNN local information network for simultaneous global scope dependency establishment and local feature similarity enhancement, then aggregates their feature results together. In the FCF module, the proposed method includes a multi-head cross-attention and a convolutional feedforward network for feature fusion of templates and search regions. Finally, we use the classification and regression head to predict the exact location of the target. Extensive experiments demonstrate that, our method achieves better tracking performance than the baseline method, when both methods are trained with fewer data. Meanwhile, without any extra training data, the proposed method also obtains comparable results with other state-of-the-art trackers on six challenging benchmarks, including GOT-10k, LaSOT, TrackingNet, OTB100, UAV123, and NFS. Furthermore, our model is lightweight compared with the baseline method, with fewer parameters and lower FLOPs, while running at real-time speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助搜第一采纳,获得10
1秒前
www发布了新的文献求助10
2秒前
追光鱼完成签到,获得积分10
4秒前
阳光的玉米完成签到,获得积分10
5秒前
6秒前
Damocles完成签到,获得积分10
6秒前
李锐完成签到,获得积分10
7秒前
7秒前
8秒前
嘴巴张大一点完成签到,获得积分20
9秒前
12秒前
12秒前
12秒前
小天应助Li采纳,获得30
12秒前
MXene应助MOMO采纳,获得20
13秒前
暖小阳发布了新的文献求助10
13秒前
NexusExplorer应助YN3585采纳,获得10
14秒前
14秒前
wq完成签到,获得积分20
15秒前
18秒前
CodeCraft应助嘴巴张大一点采纳,获得10
18秒前
snow完成签到,获得积分10
19秒前
冷静凡天应助温柔靖巧采纳,获得10
19秒前
20秒前
CodeCraft应助haha采纳,获得20
21秒前
李健的小迷弟应助毅诚菌采纳,获得10
22秒前
22秒前
26秒前
26秒前
27秒前
zzl完成签到,获得积分10
27秒前
叮叮当当发布了新的文献求助10
28秒前
29秒前
wan完成签到,获得积分10
30秒前
念姬发布了新的文献求助10
30秒前
愉快太清发布了新的文献求助10
32秒前
花卷完成签到,获得积分10
33秒前
CodeCraft应助llllly采纳,获得10
37秒前
xiaobai完成签到,获得积分10
38秒前
Xiaoxiao应助调皮的曼安采纳,获得10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962882
求助须知:如何正确求助?哪些是违规求助? 3508809
关于积分的说明 11143356
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579