Efficient Single-Object Tracker Based on Local-Global Feature Fusion

计算机科学 人工智能 BitTorrent跟踪器 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 眼动 工程类 语言学 电气工程 哲学 电压
作者
Xiaoyu Ni,Liang Yuan,Kai Lv
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1114-1122 被引量:3
标识
DOI:10.1109/tcsvt.2023.3290868
摘要

Since Vision Transformers (ViTs) are introduced into computer vision, they have developed rapidly in a variety of visual tasks. Recently, they have been gradually applied to visual tracking. The Transformer can adaptively capture the global similarity comparisons of target objects and search regions, which has achieved competitive performance results. However, Transformer architectures often require a large amount of training data and computing resources, and lack prior knowledge of inductive biases that existed in images. The advantages of convolutional neural networks (CNNs) in extracting local similarities are not fully exploited. To resolve these problems, we propose a lightweight tracking architecture, combining CNN and Transformer in the feature fusion stage. Specifically, Local-Global Feature Interaction (LGFI) module and Feature Cross-Fusion (FCF) module are the key components in our approach. In the LGFI module, the proposed method includes a Transformer global information network and a Transformer-like CNN local information network for simultaneous global scope dependency establishment and local feature similarity enhancement, then aggregates their feature results together. In the FCF module, the proposed method includes a multi-head cross-attention and a convolutional feedforward network for feature fusion of templates and search regions. Finally, we use the classification and regression head to predict the exact location of the target. Extensive experiments demonstrate that, our method achieves better tracking performance than the baseline method, when both methods are trained with fewer data. Meanwhile, without any extra training data, the proposed method also obtains comparable results with other state-of-the-art trackers on six challenging benchmarks, including GOT-10k, LaSOT, TrackingNet, OTB100, UAV123, and NFS. Furthermore, our model is lightweight compared with the baseline method, with fewer parameters and lower FLOPs, while running at real-time speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangxq完成签到,获得积分10
刚刚
刚刚
Akim应助淡然篮球采纳,获得10
刚刚
所所应助缥缈的青旋采纳,获得10
刚刚
科研通AI6应助徐zhipei采纳,获得30
刚刚
替罗非班发布了新的文献求助10
刚刚
myp完成签到,获得积分10
刚刚
lzx666发布了新的文献求助10
1秒前
1秒前
昱旻完成签到 ,获得积分10
1秒前
Akim应助香蕉静芙采纳,获得10
1秒前
2秒前
2秒前
昵称发布了新的文献求助10
2秒前
研友_VZG7GZ应助JI采纳,获得20
3秒前
Dean应助yydsyyd采纳,获得50
3秒前
追寻的访烟完成签到,获得积分10
3秒前
李哈哈发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
Persist完成签到,获得积分10
5秒前
在水一方应助紫罗兰花海采纳,获得10
5秒前
5秒前
6秒前
yhao发布了新的文献求助10
6秒前
6秒前
科目三应助King16采纳,获得10
6秒前
summer发布了新的文献求助10
6秒前
6秒前
6秒前
桐桐应助兰彻采纳,获得10
6秒前
小马甲应助haha采纳,获得10
6秒前
Thecold完成签到,获得积分10
7秒前
张张完成签到 ,获得积分10
7秒前
善学以致用应助lzx666采纳,获得10
7秒前
妙蛙种子发布了新的文献求助10
8秒前
hh完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437