Efficient Single-Object Tracker Based on Local-Global Feature Fusion

计算机科学 人工智能 BitTorrent跟踪器 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 眼动 工程类 语言学 哲学 电压 电气工程
作者
Xian-Qiang Ni,Yuan Liu,Kai Lv
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcsvt.2023.3290868
摘要

Since Vision Transformers (ViTs) are introduced into computer vision, they have developed rapidly in a variety of visual tasks. Recently, they have been gradually applied to visual tracking. The Transformer can adaptively capture the global similarity comparisons of target objects and search regions, which has achieved competitive performance results. However, Transformer architectures often require a large amount of training data and computing resources, and lack prior knowledge of inductive biases that existed in images. The advantages of convolutional neural networks (CNNs) in extracting local similarities are not fully exploited. To resolve these problems, we propose a lightweight tracking architecture, combining CNN and Transformer in the feature fusion stage. Specifically, Local-Global Feature Interaction (LGFI) module and Feature Cross-Fusion (FCF) module are the key components in our approach. In the LGFI module, the proposed method includes a Transformer global information network and a Transformer-like CNN local information network for simultaneous global scope dependency establishment and local feature similarity enhancement, then aggregates their feature results together. In the FCF module, the proposed method includes a multi-head cross-attention and a convolutional feedforward network for feature fusion of templates and search regions. Finally, we use the classification and regression head to predict the exact location of the target. Extensive experiments demonstrate that, our method achieves better tracking performance than the baseline method, when both methods are trained with fewer data. Meanwhile, without any extra training data, the proposed method also obtains comparable results with other state-of-the-art trackers on six challenging benchmarks, including GOT-10k, LaSOT, TrackingNet, OTB100, UAV123, and NFS. Furthermore, our model is lightweight compared with the baseline method, with fewer parameters and lower FLOPs, while running at real-time speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助SWL采纳,获得10
1秒前
Mia完成签到,获得积分10
1秒前
1秒前
1秒前
westbobo发布了新的文献求助10
1秒前
yy625完成签到,获得积分10
2秒前
平常的毛豆应助小海豹采纳,获得30
2秒前
沉静逍遥发布了新的文献求助10
2秒前
Ly啦啦啦发布了新的文献求助10
2秒前
大空翼发布了新的文献求助10
3秒前
3秒前
Bluebulu完成签到,获得积分10
3秒前
reuslee发布了新的文献求助10
4秒前
5秒前
凤芊芊发布了新的文献求助20
6秒前
纯真的夏柳完成签到,获得积分10
6秒前
封妖妖完成签到,获得积分10
7秒前
子非鱼发布了新的文献求助10
7秒前
旺仔完成签到 ,获得积分10
8秒前
8秒前
jenningseastera应助l玖采纳,获得30
9秒前
Yuan88发布了新的文献求助10
9秒前
hkh发布了新的文献求助10
9秒前
安详的不二完成签到,获得积分10
9秒前
小马甲应助浏阳河采纳,获得10
10秒前
11秒前
HCCha发布了新的文献求助10
11秒前
852应助reuslee采纳,获得10
11秒前
12秒前
12秒前
12秒前
开朗冷雪完成签到,获得积分10
12秒前
小二郎应助虚心的灵枫采纳,获得10
12秒前
爆米花应助大空翼采纳,获得10
13秒前
13秒前
13秒前
宋泽艺完成签到 ,获得积分10
14秒前
15秒前
小蘑菇应助啵啵采纳,获得10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842012
求助须知:如何正确求助?哪些是违规求助? 3384135
关于积分的说明 10532872
捐赠科研通 3104461
什么是DOI,文献DOI怎么找? 1709640
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953