Efficient Single-Object Tracker Based on Local-Global Feature Fusion

计算机科学 人工智能 BitTorrent跟踪器 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 眼动 工程类 语言学 电气工程 哲学 电压
作者
Xiaoyu Ni,Liang Yuan,Kai Lv
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1114-1122 被引量:3
标识
DOI:10.1109/tcsvt.2023.3290868
摘要

Since Vision Transformers (ViTs) are introduced into computer vision, they have developed rapidly in a variety of visual tasks. Recently, they have been gradually applied to visual tracking. The Transformer can adaptively capture the global similarity comparisons of target objects and search regions, which has achieved competitive performance results. However, Transformer architectures often require a large amount of training data and computing resources, and lack prior knowledge of inductive biases that existed in images. The advantages of convolutional neural networks (CNNs) in extracting local similarities are not fully exploited. To resolve these problems, we propose a lightweight tracking architecture, combining CNN and Transformer in the feature fusion stage. Specifically, Local-Global Feature Interaction (LGFI) module and Feature Cross-Fusion (FCF) module are the key components in our approach. In the LGFI module, the proposed method includes a Transformer global information network and a Transformer-like CNN local information network for simultaneous global scope dependency establishment and local feature similarity enhancement, then aggregates their feature results together. In the FCF module, the proposed method includes a multi-head cross-attention and a convolutional feedforward network for feature fusion of templates and search regions. Finally, we use the classification and regression head to predict the exact location of the target. Extensive experiments demonstrate that, our method achieves better tracking performance than the baseline method, when both methods are trained with fewer data. Meanwhile, without any extra training data, the proposed method also obtains comparable results with other state-of-the-art trackers on six challenging benchmarks, including GOT-10k, LaSOT, TrackingNet, OTB100, UAV123, and NFS. Furthermore, our model is lightweight compared with the baseline method, with fewer parameters and lower FLOPs, while running at real-time speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lingua发布了新的文献求助200
1秒前
1秒前
希望天下0贩的0应助yyl采纳,获得10
1秒前
Dann完成签到,获得积分10
3秒前
3秒前
4秒前
WTL发布了新的文献求助10
4秒前
无极微光应助橙子采纳,获得20
5秒前
8秒前
8秒前
8秒前
bingwang发布了新的文献求助10
9秒前
舒心的语薇完成签到,获得积分10
9秒前
9秒前
专一的从波完成签到 ,获得积分10
10秒前
10秒前
彭于晏应助wxj采纳,获得10
11秒前
11秒前
科研通AI6应助ganlixuan采纳,获得10
11秒前
11秒前
12秒前
老金金发布了新的文献求助10
12秒前
领导范儿应助Wayne_Sun采纳,获得10
13秒前
123321发布了新的文献求助10
13秒前
14秒前
14秒前
orixero应助guyanlong采纳,获得10
15秒前
19205100313发布了新的文献求助10
15秒前
16秒前
孙嘉畯发布了新的文献求助10
16秒前
17秒前
18秒前
yyl发布了新的文献求助10
18秒前
19秒前
meng213发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
英俊的铭应助乐观三问采纳,获得10
21秒前
感动归尘发布了新的文献求助10
22秒前
眠羊发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405445
求助须知:如何正确求助?哪些是违规求助? 4523755
关于积分的说明 14095215
捐赠科研通 4437445
什么是DOI,文献DOI怎么找? 2435716
邀请新用户注册赠送积分活动 1427824
关于科研通互助平台的介绍 1406086