Efficient Single-Object Tracker Based on Local-Global Feature Fusion

计算机科学 人工智能 BitTorrent跟踪器 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 眼动 工程类 语言学 电气工程 哲学 电压
作者
Xiaoyu Ni,Liang Yuan,Kai Lv
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1114-1122 被引量:3
标识
DOI:10.1109/tcsvt.2023.3290868
摘要

Since Vision Transformers (ViTs) are introduced into computer vision, they have developed rapidly in a variety of visual tasks. Recently, they have been gradually applied to visual tracking. The Transformer can adaptively capture the global similarity comparisons of target objects and search regions, which has achieved competitive performance results. However, Transformer architectures often require a large amount of training data and computing resources, and lack prior knowledge of inductive biases that existed in images. The advantages of convolutional neural networks (CNNs) in extracting local similarities are not fully exploited. To resolve these problems, we propose a lightweight tracking architecture, combining CNN and Transformer in the feature fusion stage. Specifically, Local-Global Feature Interaction (LGFI) module and Feature Cross-Fusion (FCF) module are the key components in our approach. In the LGFI module, the proposed method includes a Transformer global information network and a Transformer-like CNN local information network for simultaneous global scope dependency establishment and local feature similarity enhancement, then aggregates their feature results together. In the FCF module, the proposed method includes a multi-head cross-attention and a convolutional feedforward network for feature fusion of templates and search regions. Finally, we use the classification and regression head to predict the exact location of the target. Extensive experiments demonstrate that, our method achieves better tracking performance than the baseline method, when both methods are trained with fewer data. Meanwhile, without any extra training data, the proposed method also obtains comparable results with other state-of-the-art trackers on six challenging benchmarks, including GOT-10k, LaSOT, TrackingNet, OTB100, UAV123, and NFS. Furthermore, our model is lightweight compared with the baseline method, with fewer parameters and lower FLOPs, while running at real-time speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
2秒前
隐形曼青应助Luobing采纳,获得10
2秒前
斯文败类应助小凯采纳,获得10
2秒前
2秒前
Owen应助wushangyu采纳,获得10
2秒前
乐瑶完成签到,获得积分10
3秒前
3秒前
Wulingfeng发布了新的文献求助10
3秒前
3秒前
3秒前
迷路的墨镜完成签到,获得积分10
3秒前
3秒前
Lxk发布了新的文献求助10
3秒前
秋墨发布了新的文献求助10
4秒前
gzmejiji完成签到,获得积分10
4秒前
jennifer发布了新的文献求助10
4秒前
4秒前
无极微光应助princess采纳,获得20
5秒前
helen发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
脑洞疼应助聂璐燕采纳,获得10
6秒前
6秒前
祁行云发布了新的文献求助10
7秒前
liuting完成签到,获得积分10
7秒前
李健的小迷弟应助小白鼠采纳,获得10
7秒前
山茶发布了新的文献求助10
7秒前
uu发布了新的文献求助10
8秒前
mager完成签到 ,获得积分10
8秒前
美好斓发布了新的文献求助10
8秒前
zhangzhang发布了新的文献求助10
8秒前
星空完成签到,获得积分10
9秒前
9秒前
华仔应助t250采纳,获得10
9秒前
风中忆枫发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002