Efficient Single-Object Tracker Based on Local-Global Feature Fusion

计算机科学 人工智能 BitTorrent跟踪器 卷积神经网络 模式识别(心理学) 特征提取 变压器 特征(语言学) 计算机视觉 眼动 工程类 语言学 哲学 电压 电气工程
作者
Xian-Qiang Ni,Yuan Liu,Kai Lv
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcsvt.2023.3290868
摘要

Since Vision Transformers (ViTs) are introduced into computer vision, they have developed rapidly in a variety of visual tasks. Recently, they have been gradually applied to visual tracking. The Transformer can adaptively capture the global similarity comparisons of target objects and search regions, which has achieved competitive performance results. However, Transformer architectures often require a large amount of training data and computing resources, and lack prior knowledge of inductive biases that existed in images. The advantages of convolutional neural networks (CNNs) in extracting local similarities are not fully exploited. To resolve these problems, we propose a lightweight tracking architecture, combining CNN and Transformer in the feature fusion stage. Specifically, Local-Global Feature Interaction (LGFI) module and Feature Cross-Fusion (FCF) module are the key components in our approach. In the LGFI module, the proposed method includes a Transformer global information network and a Transformer-like CNN local information network for simultaneous global scope dependency establishment and local feature similarity enhancement, then aggregates their feature results together. In the FCF module, the proposed method includes a multi-head cross-attention and a convolutional feedforward network for feature fusion of templates and search regions. Finally, we use the classification and regression head to predict the exact location of the target. Extensive experiments demonstrate that, our method achieves better tracking performance than the baseline method, when both methods are trained with fewer data. Meanwhile, without any extra training data, the proposed method also obtains comparable results with other state-of-the-art trackers on six challenging benchmarks, including GOT-10k, LaSOT, TrackingNet, OTB100, UAV123, and NFS. Furthermore, our model is lightweight compared with the baseline method, with fewer parameters and lower FLOPs, while running at real-time speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到,获得积分20
刚刚
刚刚
1秒前
1秒前
Shine发布了新的文献求助10
1秒前
归尘发布了新的文献求助30
1秒前
2秒前
深情安青应助完美的him采纳,获得10
2秒前
2秒前
科研废物发布了新的文献求助10
2秒前
wuwen发布了新的文献求助10
2秒前
啾啾咪咪发布了新的文献求助10
2秒前
彭于晏应助失眠剑采纳,获得10
3秒前
Baelfire完成签到,获得积分10
3秒前
彭佳丽发布了新的文献求助10
3秒前
MMMMHH发布了新的文献求助10
4秒前
烟花应助科研拉布拉多采纳,获得10
5秒前
FLO发布了新的文献求助10
6秒前
快乐天荷完成签到,获得积分10
6秒前
heyvan发布了新的文献求助10
6秒前
6秒前
7秒前
腼腆的立诚完成签到,获得积分10
8秒前
小刘完成签到,获得积分10
9秒前
明亮的代灵完成签到 ,获得积分10
10秒前
Ly关闭了Ly文献求助
11秒前
jhanfglin发布了新的文献求助10
12秒前
刘仁轨完成签到,获得积分10
12秒前
ZY完成签到 ,获得积分10
12秒前
酸奶泡泡发布了新的文献求助10
13秒前
13秒前
14秒前
云雀完成签到,获得积分10
14秒前
田様应助quickerrun采纳,获得30
15秒前
15秒前
15秒前
无私心情完成签到,获得积分10
16秒前
喜乐完成签到 ,获得积分10
16秒前
16秒前
jhanfglin完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272