已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning

计算机科学 幻觉 机器学习 人工智能 情态动词 高分子化学 化学
作者
Fuxiao Liu,Kevin Lin,Linjie Li,Jianfeng Wang,Yaser Yacoob,Lijuan Wang
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2306.14565
摘要

Despite the promising progress in multi-modal tasks, current large multi-modal models (LMMs) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at three semantic levels: (i) Nonexistent Object Manipulation, (ii) Existent Object Manipulation and (iii) Knowledge Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts. GAVIE does not require human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate existing LMMs exhibit significant hallucinations when presented with our negative instructions, particularly Existent Object and Knowledge Manipulation instructions. Moreover, we successfully mitigate hallucination by finetuning MiniGPT4 and mPLUG-Owl on LRV-Instruction while improving performance on several public datasets compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model. Code and data are available at https://github.com/FuxiaoLiu/LRV-Instruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李秋静完成签到,获得积分10
刚刚
2秒前
边港洋完成签到 ,获得积分10
2秒前
洛神完成签到 ,获得积分10
2秒前
mmmm完成签到,获得积分10
3秒前
李李完成签到,获得积分10
3秒前
CipherSage应助wangsenyu采纳,获得10
3秒前
deng完成签到 ,获得积分10
4秒前
至乐无乐发布了新的文献求助10
4秒前
韦老虎完成签到,获得积分10
6秒前
斯文败类应助短岛采纳,获得10
8秒前
10秒前
陌路完成签到 ,获得积分10
13秒前
xyyyy完成签到 ,获得积分10
14秒前
儿学化学打断腿完成签到,获得积分10
16秒前
至乐无乐完成签到,获得积分10
16秒前
好好响一响完成签到,获得积分10
19秒前
Jasper应助dhhaoyihong采纳,获得10
21秒前
青糯完成签到 ,获得积分10
22秒前
23秒前
大方的火龙果完成签到 ,获得积分10
23秒前
26秒前
李健应助灵巧汉堡采纳,获得10
26秒前
啦啦啦发布了新的文献求助10
29秒前
娜行完成签到 ,获得积分10
31秒前
细腻问柳完成签到,获得积分10
33秒前
35秒前
39秒前
40秒前
JazzWon完成签到,获得积分10
42秒前
破婆婆完成签到,获得积分10
43秒前
潇湘完成签到 ,获得积分10
43秒前
畅快的篮球完成签到,获得积分10
43秒前
43秒前
灵巧汉堡发布了新的文献求助10
44秒前
dhhaoyihong完成签到,获得积分10
45秒前
wei发布了新的文献求助10
45秒前
46秒前
香山叶正红完成签到 ,获得积分10
47秒前
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133798
求助须知:如何正确求助?哪些是违规求助? 2784777
关于积分的说明 7768435
捐赠科研通 2440073
什么是DOI,文献DOI怎么找? 1297175
科研通“疑难数据库(出版商)”最低求助积分说明 624888
版权声明 600791