亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The implication of oversampling on the effectiveness of force signals in the fault detection of endodontic instruments during RCT

人工智能 机器学习 过采样 计算机科学 决策树 过度拟合 朴素贝叶斯分类器 数据挖掘 模式识别(心理学) 支持向量机 人工神经网络 带宽(计算) 计算机网络
作者
Vinod Singh Thakur,Pavan Kumar Kankar,Anand Parey,Arpit Jain,Prashant K. Jain
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:237 (8): 958-974 被引量:1
标识
DOI:10.1177/09544119231186074
摘要

This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
余闻问发布了新的文献求助10
6秒前
zoiaii完成签到 ,获得积分10
9秒前
张志超发布了新的文献求助10
9秒前
mmyhn发布了新的文献求助10
12秒前
Metx完成签到 ,获得积分10
13秒前
17秒前
科研小菜鸟完成签到,获得积分10
23秒前
27秒前
林狗完成签到 ,获得积分10
28秒前
29秒前
H_W完成签到 ,获得积分10
30秒前
yuanyuan发布了新的文献求助10
31秒前
科研通AI6应助科研小菜鸟采纳,获得30
38秒前
科研通AI2S应助丁又菡采纳,获得50
39秒前
41秒前
YAKI完成签到,获得积分10
44秒前
丰富青雪发布了新的文献求助10
45秒前
搜集达人应助Seeking采纳,获得10
46秒前
科研通AI6应助一个西藏采纳,获得10
46秒前
思源应助勇敢且鲁班采纳,获得10
48秒前
彭于晏应助Zenia采纳,获得10
54秒前
清爽的又夏完成签到,获得积分10
55秒前
55秒前
情怀应助YAKI采纳,获得10
57秒前
58秒前
英姑应助清爽的又夏采纳,获得10
59秒前
寒冷河马完成签到,获得积分10
59秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助yuanyuan采纳,获得10
1分钟前
任性的水风完成签到,获得积分10
1分钟前
丰富青雪完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898