The implication of oversampling on the effectiveness of force signals in the fault detection of endodontic instruments during RCT

人工智能 机器学习 过采样 计算机科学 决策树 过度拟合 朴素贝叶斯分类器 数据挖掘 模式识别(心理学) 支持向量机 人工神经网络 带宽(计算) 计算机网络
作者
Vinod Singh Thakur,Pavan Kumar Kankar,Anand Parey,Arpit Jain,Prashant K. Jain
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:237 (8): 958-974 被引量:1
标识
DOI:10.1177/09544119231186074
摘要

This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘雪月完成签到,获得积分10
1秒前
深情安青应助琢钰采纳,获得10
1秒前
112发布了新的文献求助10
1秒前
2秒前
情怀应助Qssai采纳,获得10
4秒前
笑相完成签到,获得积分10
4秒前
changnan发布了新的文献求助10
4秒前
5秒前
Ni发布了新的文献求助10
6秒前
7秒前
7秒前
呼呼发布了新的文献求助10
8秒前
hulian发布了新的文献求助10
9秒前
零可林应助悬铃木采纳,获得10
9秒前
10秒前
10秒前
10秒前
临床菜鸟完成签到 ,获得积分10
10秒前
11秒前
长情萤完成签到,获得积分10
11秒前
琢钰发布了新的文献求助10
11秒前
飞虎发布了新的文献求助10
12秒前
歪比巴卜发布了新的文献求助10
12秒前
阿良发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
16秒前
16秒前
天真璎完成签到,获得积分10
16秒前
靖宇发布了新的文献求助10
16秒前
曦颜发布了新的文献求助20
17秒前
Y神完成签到 ,获得积分10
18秒前
呼呼完成签到,获得积分10
18秒前
城南花已开完成签到,获得积分10
18秒前
汉堡包应助歪比巴卜采纳,获得10
18秒前
wyh3218完成签到 ,获得积分10
19秒前
顾矜应助孤独的德地采纳,获得10
19秒前
Qssai发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527