The implication of oversampling on the effectiveness of force signals in the fault detection of endodontic instruments during RCT

人工智能 机器学习 过采样 计算机科学 决策树 过度拟合 朴素贝叶斯分类器 数据挖掘 模式识别(心理学) 支持向量机 人工神经网络 带宽(计算) 计算机网络
作者
Vinod Singh Thakur,Pavan Kumar Kankar,Anand Parey,Arpit Jain,Prashant K. Jain
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:237 (8): 958-974 被引量:1
标识
DOI:10.1177/09544119231186074
摘要

This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斑比完成签到,获得积分10
刚刚
pwj发布了新的文献求助10
1秒前
庚辰梦秋完成签到,获得积分10
1秒前
1秒前
东方宛亦完成签到,获得积分10
1秒前
大模型应助SIDEsss采纳,获得10
2秒前
狂野忆文完成签到,获得积分20
2秒前
爱笑的傲晴完成签到,获得积分10
2秒前
cessy完成签到,获得积分10
3秒前
多加芋泥完成签到,获得积分10
3秒前
3秒前
xiaoyao发布了新的文献求助10
4秒前
ZH的天方夜谭完成签到,获得积分20
4秒前
5秒前
Jin完成签到 ,获得积分10
5秒前
麻瓜发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
6秒前
struggling2026完成签到,获得积分10
6秒前
蔡毛线完成签到 ,获得积分10
6秒前
Del应助赵振辉采纳,获得10
7秒前
JJ发布了新的文献求助30
7秒前
团团团完成签到 ,获得积分10
8秒前
8秒前
rangergzz完成签到 ,获得积分10
8秒前
ct发布了新的文献求助10
8秒前
菜宝爱吃菜完成签到,获得积分10
11秒前
12秒前
Qword完成签到,获得积分10
12秒前
123完成签到,获得积分20
12秒前
斯文败类应助Mike采纳,获得10
13秒前
13秒前
田様应助狂野忆文采纳,获得10
14秒前
14秒前
桐桐应助认真的飞扬采纳,获得10
14秒前
14秒前
allrubbish发布了新的文献求助10
15秒前
领导范儿应助拼搏尔风采纳,获得10
15秒前
15秒前
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056892
求助须知:如何正确求助?哪些是违规求助? 2713451
关于积分的说明 7435856
捐赠科研通 2358580
什么是DOI,文献DOI怎么找? 1249424
科研通“疑难数据库(出版商)”最低求助积分说明 607055
版权声明 596283