已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The implication of oversampling on the effectiveness of force signals in the fault detection of endodontic instruments during RCT

人工智能 机器学习 过采样 计算机科学 决策树 过度拟合 朴素贝叶斯分类器 数据挖掘 模式识别(心理学) 支持向量机 人工神经网络 带宽(计算) 计算机网络
作者
Vinod Singh Thakur,Pavan Kumar Kankar,Anand Parey,Arpit Jain,Prashant K. Jain
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE]
卷期号:237 (8): 958-974 被引量:1
标识
DOI:10.1177/09544119231186074
摘要

This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小鹿嘻嘻发布了新的文献求助10
5秒前
6秒前
7秒前
woleaisa发布了新的文献求助10
7秒前
wuhao完成签到,获得积分10
9秒前
zlf发布了新的文献求助10
10秒前
不安青牛应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
隐形曼青应助拉扣采纳,获得10
19秒前
子凡完成签到 ,获得积分10
20秒前
22秒前
淡漠完成签到 ,获得积分10
23秒前
24秒前
bioglia完成签到,获得积分10
25秒前
27秒前
AlwaysKim发布了新的文献求助10
27秒前
渊_完成签到 ,获得积分10
27秒前
zlf完成签到,获得积分10
29秒前
杨小辉发布了新的文献求助10
32秒前
菲1208完成签到,获得积分10
33秒前
田様应助.....采纳,获得10
33秒前
空2完成签到 ,获得积分0
33秒前
34秒前
35秒前
材料生发布了新的文献求助10
38秒前
杨小辉完成签到,获得积分20
39秒前
隐形的雁完成签到,获得积分10
40秒前
李健完成签到,获得积分10
43秒前
材料生完成签到,获得积分10
44秒前
archer01完成签到,获得积分20
44秒前
45秒前
45秒前
Ahui完成签到 ,获得积分10
47秒前
47秒前
量子星尘发布了新的文献求助10
47秒前
49秒前
洛洛发布了新的文献求助10
49秒前
50秒前
ersheng发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482161
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388474
捐赠科研通 4511969
什么是DOI,文献DOI怎么找? 2472656
邀请新用户注册赠送积分活动 1458923
关于科研通互助平台的介绍 1432309