Respiratory Motion Estimation of Tumor Using Point Clouds of Skin Surface

人工智能 计算机科学 计算机视觉 运动估计 点云 特征(语言学) 相关性 模式识别(心理学) 运动(物理) 跟踪(教育) 数学 心理学 教育学 哲学 语言学 几何学
作者
Bo Li,Peng Li,Rongchuan Sun,Shumei Yu,Huicong Liu,Lining Sun,Yun-Hui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:2
标识
DOI:10.1109/tim.2023.3295023
摘要

Traditional methods of respiration tracking used in radiosurgical robotics employ external optical markers to estimate the tumor position, which requires extracting the respiratory motion characteristics of the chest and establishing correlation models manually. The estimation is easily affected by the placement and number of markers. In order to solve the above problem, an estimation method of tumor location during respiratory motion is proposed using point clouds of the chest and abdominal skin surface. Based on the correlations with the tumor’s location, the essential area of the surface is selected as a data set and processed. Then, a hierarchical network is built to extract the feature of the skin and map those features to the location of tumors. In order to improve the estimation accuracy, a correlation smooth strategy is used to avoid the miss correlations between the skin surface and tumor locations. Investigations are conducted to find the optimal combinations of primary factors. Five typical respiratory data are collected in the experiments. Results show that combining the essential area of the skin surface and the classification network leads to better performance. Further results also show that the error of the proposed method is smaller than that of the traditional optical marker estimation method. Using the proposed method, manually extracting features and establishing correlation models are unnecessary, and the estimation accuracy is increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助西西采纳,获得10
1秒前
1秒前
赵赵完成签到,获得积分10
2秒前
2秒前
yh完成签到,获得积分10
3秒前
4秒前
乐观明雪发布了新的文献求助10
5秒前
NexusExplorer应助斯文的傲珊采纳,获得10
5秒前
深情安青应助zhf采纳,获得10
5秒前
赵赵发布了新的文献求助20
5秒前
思源应助孙亦沈采纳,获得10
6秒前
Ykx完成签到,获得积分10
7秒前
丘比特应助Momo采纳,获得10
7秒前
阿北完成签到 ,获得积分10
7秒前
8秒前
hay完成签到,获得积分10
8秒前
簌落完成签到,获得积分10
9秒前
11秒前
14秒前
14秒前
14秒前
胡晓平完成签到,获得积分10
15秒前
15秒前
15秒前
彭于晏应助怕黑海冬采纳,获得10
16秒前
16秒前
zhf发布了新的文献求助10
18秒前
执着发布了新的文献求助10
18秒前
carly发布了新的文献求助10
18秒前
我是AY发布了新的文献求助10
18秒前
刘七岁发布了新的文献求助10
18秒前
胡晓平发布了新的文献求助10
19秒前
笑点低的惊蛰完成签到,获得积分10
19秒前
怕黑的金鱼完成签到,获得积分10
19秒前
Momo发布了新的文献求助10
21秒前
慕青应助Valky采纳,获得10
23秒前
坚强的严青应助李崋壹采纳,获得50
26秒前
26秒前
26秒前
宇宇宇发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449