Respiratory Motion Estimation of Tumor Using Point Clouds of Skin Surface

人工智能 计算机科学 计算机视觉 运动估计 点云 特征(语言学) 相关性 模式识别(心理学) 运动(物理) 跟踪(教育) 数学 心理学 教育学 哲学 语言学 几何学
作者
Bo Li,Peng Li,Rongchuan Sun,Shumei Yu,Huicong Liu,Lining Sun,Yunhui Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:2
标识
DOI:10.1109/tim.2023.3295023
摘要

Traditional methods of respiration tracking used in radiosurgical robotics employ external optical markers to estimate the tumor position, which requires extracting the respiratory motion characteristics of the chest and establishing correlation models manually. The estimation is easily affected by the placement and number of markers. In order to solve the above problem, an estimation method of tumor location during respiratory motion is proposed using point clouds of the chest and abdominal skin surface. Based on the correlations with the tumor’s location, the essential area of the surface is selected as a data set and processed. Then, a hierarchical network is built to extract the feature of the skin and map those features to the location of tumors. In order to improve the estimation accuracy, a correlation smooth strategy is used to avoid the miss correlations between the skin surface and tumor locations. Investigations are conducted to find the optimal combinations of primary factors. Five typical respiratory data are collected in the experiments. Results show that combining the essential area of the skin surface and the classification network leads to better performance. Further results also show that the error of the proposed method is smaller than that of the traditional optical marker estimation method. Using the proposed method, manually extracting features and establishing correlation models are unnecessary, and the estimation accuracy is increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
中工完成签到 ,获得积分10
1秒前
2秒前
VDC发布了新的文献求助10
2秒前
REN发布了新的文献求助20
2秒前
盼盼完成签到,获得积分10
3秒前
脑洞疼应助半生采纳,获得30
3秒前
东东完成签到,获得积分10
3秒前
中岛悠斗完成签到,获得积分10
3秒前
LuLan0401完成签到,获得积分10
4秒前
4秒前
语秋完成签到,获得积分10
4秒前
耍酷青梦完成签到 ,获得积分10
4秒前
充电宝应助xhy采纳,获得10
4秒前
陈海伦完成签到 ,获得积分10
5秒前
5秒前
5秒前
小汤圆发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
曾曾完成签到,获得积分10
6秒前
721完成签到,获得积分10
7秒前
糟糕的雪糕完成签到,获得积分10
7秒前
谁能拒绝周杰伦呢完成签到,获得积分10
7秒前
MM完成签到,获得积分10
7秒前
千幻完成签到,获得积分10
7秒前
7秒前
完美世界应助娜行采纳,获得10
8秒前
Again完成签到,获得积分10
8秒前
科研小菜鸟完成签到,获得积分20
8秒前
胡枝子完成签到,获得积分10
9秒前
苹果从菡完成签到,获得积分10
9秒前
ooseabiscuit完成签到,获得积分10
9秒前
9秒前
淡淡的雪发布了新的文献求助10
9秒前
不打扰完成签到 ,获得积分10
10秒前
千幻发布了新的文献求助10
10秒前
crr发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672