吸附
杀虫剂
海绵
化学工程
纳米颗粒
环境友好型
环境化学
化学
材料科学
纳米技术
有机化学
农学
生态学
植物
生物
工程类
作者
Xiaoxin Chen,Haobo Ma,Xiaoyu Ji,Ruimeng Han,Kyongjin Pang,Zemin Yang,Zhimin Liu,Shan Peng
出处
期刊:Water Research
[Elsevier]
日期:2023-07-05
卷期号:243: 120314-120314
被引量:33
标识
DOI:10.1016/j.watres.2023.120314
摘要
Microplastics (MPs) and pesticides are becoming an intractable environmental issue due to their wide spreading and non-degradable nature, posing serious threat to ecosystem and human health. To settle such dilemma, this work reasonably designed a superhydrophobic MOF-based coated sponge (ODSOSS/TiO2/Ni-MOF/PDA@Sponge) through the combination of an environmentally friendly in-situ supersaturated coprecipitation and polysesiloxane modification method. Among them, (I) the introduction of polydopamine (PDA) not only improves the adhesion between coatings and sponge, but also enhances the growth of MOF structure through complexation. (II) The obtained Ni-MOF shows large-area microscale anthemy structure with multilayered flaky texture, forming heterogeneously hierarchical structure with the deposited TiO2 nanoparticles, which promotes photodegradation ability of TiO2 owing to great specific surface area of Ni-MOF. (III) The high specific large area Ni-MOF supplies sufficient action sites for linkage of PDA and polysesiloxane molecules with unique nanocage-like structure, thus further greatly increasing adsorption force for various pollutants. (IV) The superhydrophobicity protect the porous channels of MOF from contamination of various absorbed pollutants, while TiO2 nanoparticles effectively photodegrade the absorbed organic pollutants, endowing the sponge superior recyclability. The superhydrophobic sponge selectively rapidly and synchronously adsorbs various MPs (maintained almost 100% after 60 cycles) and pesticides (adsorption rates 71.6%-95.1%) from high-salinity water. The large-area sponge (9 cm × 6 cm × 1 cm) simultaneously removes almost 100% MPs (40 mg/L), Sudan Ⅲ (10 mg/L), kerosene (30 mL/L), and four pesticides (10 mg/L) within 1 min. Particularly, four pesticides are quickly photocatalytic degraded by the coated sponge. The free radical capture trials show that hydroxyl radicals (·OH) are the main active species of pesticide degradation. Furthermore, we reveal the negative centers where pesticide molecules are most vulnerable to ·OH attack, on basis of the charge distribution and molecular electrostatic potential (MEP) analysis. The adsorption mechanisms are carefully clarified through theoretical calculation and experimental data. This work not only provide an effective superhydrophobic candidate for MPs and pesticides removal in a broad applicable scope (especially in high-salinity wastewater), but also opens a new strategy for environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI