清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ACP-Dnnel: anti-coronavirus peptides’ prediction based on deep neural network ensemble learning

水准点(测量) 计算机科学 人工智能 深度学习 集合预报 卷积神经网络 冠状病毒 机器学习 集成学习 人工神经网络 鉴定(生物学) 2019年冠状病毒病(COVID-19) 特征(语言学) 生物 医学 植物 疾病 大地测量学 病理 传染病(医学专业) 地理 语言学 哲学
作者
Mingyou Liu,Hongmei Liu,Tao Wu,Yingxue Zhu,Yuwei Zhou,Ziru Huang,Changcheng Xiang,Jian Huang
出处
期刊:Amino Acids [Springer Nature]
卷期号:55 (9): 1121-1136 被引量:5
标识
DOI:10.1007/s00726-023-03300-6
摘要

The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助lalala采纳,获得30
3秒前
xiaosui完成签到 ,获得积分10
8秒前
JamesPei应助lalala采纳,获得10
29秒前
淞淞于我完成签到 ,获得积分10
33秒前
大个应助lalala采纳,获得20
43秒前
chengmin完成签到 ,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
白蓝完成签到 ,获得积分10
45秒前
清爽的火车完成签到 ,获得积分10
46秒前
wuyan204完成签到 ,获得积分10
53秒前
现代完成签到,获得积分10
1分钟前
科研通AI2S应助lalala采纳,获得10
1分钟前
脑洞疼应助Emon采纳,获得10
1分钟前
雪妮完成签到 ,获得积分10
1分钟前
科研通AI2S应助lalala采纳,获得10
1分钟前
pinklay完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
赘婿应助lalala采纳,获得10
2分钟前
2分钟前
Emon发布了新的文献求助10
2分钟前
颜陌完成签到,获得积分10
2分钟前
然大宝完成签到,获得积分10
2分钟前
美满的皮卡丘完成签到 ,获得积分10
2分钟前
碧蓝的尔竹应助lalala采纳,获得10
2分钟前
starleo完成签到,获得积分10
2分钟前
欢呼阁完成签到,获得积分10
2分钟前
薏仁完成签到 ,获得积分10
2分钟前
深情的凝云完成签到 ,获得积分10
2分钟前
墨言无殇完成签到 ,获得积分10
2分钟前
明朗完成签到 ,获得积分10
2分钟前
lanxinyue应助lalala采纳,获得10
2分钟前
misa完成签到 ,获得积分10
3分钟前
lulu2024完成签到,获得积分10
3分钟前
阿白头发多多完成签到,获得积分10
3分钟前
zz完成签到 ,获得积分10
3分钟前
MRJJJJ完成签到,获得积分10
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
勤劳的颤完成签到 ,获得积分10
3分钟前
Yolo完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171651
求助须知:如何正确求助?哪些是违规求助? 2822463
关于积分的说明 7939275
捐赠科研通 2483096
什么是DOI,文献DOI怎么找? 1322988
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647