ACP-Dnnel: anti-coronavirus peptides’ prediction based on deep neural network ensemble learning

水准点(测量) 计算机科学 人工智能 深度学习 集合预报 卷积神经网络 冠状病毒 机器学习 集成学习 人工神经网络 鉴定(生物学) 2019年冠状病毒病(COVID-19) 特征(语言学) 生物 医学 植物 疾病 大地测量学 病理 传染病(医学专业) 地理 语言学 哲学
作者
Mingyou Liu,Hongmei Liu,Tao Wu,Yingxue Zhu,Yuwei Zhou,Ziru Huang,Changcheng Xiang,Jian Huang
出处
期刊:Amino Acids [Springer Nature]
卷期号:55 (9): 1121-1136 被引量:5
标识
DOI:10.1007/s00726-023-03300-6
摘要

The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy完成签到 ,获得积分10
2秒前
明理晓霜发布了新的文献求助10
4秒前
ZHANGMANLI0422关注了科研通微信公众号
4秒前
M先生发布了新的文献求助30
5秒前
FashionBoy应助许多知识采纳,获得10
6秒前
Poyd完成签到,获得积分10
9秒前
9秒前
故意的傲玉应助tao_blue采纳,获得10
10秒前
10秒前
kid1912完成签到,获得积分0
10秒前
小马甲应助一网小海蜇采纳,获得10
13秒前
专一的笑阳完成签到 ,获得积分10
13秒前
xuesensu完成签到 ,获得积分10
17秒前
豌豆完成签到,获得积分10
18秒前
M先生完成签到,获得积分10
18秒前
19秒前
21秒前
科研通AI5应助sun采纳,获得10
21秒前
shitzu完成签到 ,获得积分10
22秒前
choco发布了新的文献求助10
24秒前
25秒前
李健的小迷弟应助sun采纳,获得10
25秒前
Jzhang应助liyuchen采纳,获得10
25秒前
魏伯安发布了新的文献求助30
25秒前
jjjjjj发布了新的文献求助30
27秒前
28秒前
伯赏诗霜发布了新的文献求助10
28秒前
糟糕的鹏飞完成签到 ,获得积分10
29秒前
29秒前
欢呼凡旋完成签到,获得积分10
30秒前
韩邹光完成签到,获得积分10
32秒前
xg发布了新的文献求助10
32秒前
33秒前
dktrrrr完成签到,获得积分10
33秒前
季生完成签到,获得积分10
36秒前
徐徐完成签到,获得积分10
36秒前
37秒前
37秒前
haku完成签到,获得积分10
39秒前
可爱的函函应助laodie采纳,获得10
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849