ACP-Dnnel: anti-coronavirus peptides’ prediction based on deep neural network ensemble learning

水准点(测量) 计算机科学 人工智能 深度学习 集合预报 卷积神经网络 冠状病毒 机器学习 集成学习 人工神经网络 鉴定(生物学) 2019年冠状病毒病(COVID-19) 特征(语言学) 生物 医学 植物 疾病 大地测量学 病理 传染病(医学专业) 地理 语言学 哲学
作者
Mingyou Liu,Hongmei Liu,Tao Wu,Yingxue Zhu,Yuwei Zhou,Ziru Huang,Changcheng Xiang,Jian Huang
出处
期刊:Amino Acids [Springer Science+Business Media]
卷期号:55 (9): 1121-1136 被引量:5
标识
DOI:10.1007/s00726-023-03300-6
摘要

The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YamDaamCaa应助LI_Yay采纳,获得30
刚刚
再见吧旅行者关注了科研通微信公众号
刚刚
欢喜念双发布了新的文献求助10
刚刚
sensen完成签到,获得积分10
1秒前
香蕉觅云应助Catherine_Song采纳,获得10
1秒前
在水一方应助选民很头疼采纳,获得10
2秒前
2秒前
在水一方应助幸运在我采纳,获得10
2秒前
2秒前
湫白白完成签到 ,获得积分10
3秒前
dongdong发布了新的文献求助10
3秒前
科研通AI5应助万里长城采纳,获得10
4秒前
丘比特应助Yy采纳,获得10
4秒前
桐桐应助疯狂的星月采纳,获得10
5秒前
577610822发布了新的文献求助10
5秒前
所所应助Light采纳,获得10
5秒前
共享精神应助sensen采纳,获得10
5秒前
湫白白发布了新的文献求助10
5秒前
6秒前
6秒前
冷静海完成签到,获得积分10
6秒前
完美世界应助江水采纳,获得10
6秒前
7秒前
阳光怀亦发布了新的文献求助10
8秒前
小二郎应助糖堆儿爱吃糖采纳,获得10
8秒前
9秒前
Alex完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
稳重幻珊关注了科研通微信公众号
10秒前
幽默海白完成签到 ,获得积分10
10秒前
11秒前
Foch发布了新的文献求助10
11秒前
小唐发布了新的文献求助10
11秒前
11秒前
雪轩发布了新的文献求助10
12秒前
577610822完成签到,获得积分10
13秒前
HANK2024发布了新的文献求助10
13秒前
天天快乐应助枫泾采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209