ACP-Dnnel: anti-coronavirus peptides’ prediction based on deep neural network ensemble learning

水准点(测量) 计算机科学 人工智能 深度学习 集合预报 卷积神经网络 冠状病毒 机器学习 集成学习 人工神经网络 鉴定(生物学) 2019年冠状病毒病(COVID-19) 特征(语言学) 生物 医学 植物 疾病 大地测量学 病理 传染病(医学专业) 地理 语言学 哲学
作者
Mingyou Liu,Hongmei Liu,Tao Wu,Yingxue Zhu,Yuwei Zhou,Ziru Huang,Changcheng Xiang,Jian Huang
出处
期刊:Amino Acids [Springer Science+Business Media]
卷期号:55 (9): 1121-1136 被引量:5
标识
DOI:10.1007/s00726-023-03300-6
摘要

The ongoing COVID-19 pandemic has caused dramatic loss of human life. There is an urgent need for safe and efficient anti-coronavirus infection drugs. Anti-coronavirus peptides (ACovPs) can inhibit coronavirus infection. With high-efficiency, low-toxicity, and broad-spectrum inhibitory effects on coronaviruses, they are promising candidates to be developed into a new type of anti-coronavirus drug. Experiment is the traditional way of ACovPs' identification, which is less efficient and more expensive. With the accumulation of experimental data on ACovPs, computational prediction provides a cheaper and faster way to find anti-coronavirus peptides' candidates. In this study, we ensemble several state-of-the-art machine learning methodologies to build nine classification models for the prediction of ACovPs. These models were pre-trained using deep neural networks, and the performance of our ensemble model, ACP-Dnnel, was evaluated across three datasets and independent dataset. We followed Chou's 5-step rules. (1) we constructed the benchmark datasets data1, data2, and data3 for training and testing, and introduced the independent validation dataset ACVP-M; (2) we analyzed the peptides sequence composition feature of the benchmark dataset; (3) we constructed the ACP-Dnnel model with deep convolutional neural network (DCNN) merged the bi-directional long short-term memory (BiLSTM) as the base model for pre-training to extract the features embedded in the benchmark dataset, and then, nine classification algorithms were introduced to ensemble together for classification prediction and voting together; (4) tenfold cross-validation was introduced during the training process, and the final model performance was evaluated; (5) finally, we constructed a user-friendly web server accessible to the public at http://150.158.148.228:5000/ . The highest accuracy (ACC) of ACP-Dnnel reaches 97%, and the Matthew's correlation coefficient (MCC) value exceeds 0.9. On three different datasets, its average accuracy is 96.0%. After the latest independent dataset validation, ACP-Dnnel improved at MCC, SP, and ACC values 6.2%, 7.5% and 6.3% greater, respectively. It is suggested that ACP-Dnnel can be helpful for the laboratory identification of ACovPs, speeding up the anti-coronavirus peptide drug discovery and development. We constructed the web server of anti-coronavirus peptides' prediction and it is available at http://150.158.148.228:5000/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Saint采纳,获得10
刚刚
annafan完成签到,获得积分10
刚刚
1秒前
科目三应助雷桑采纳,获得10
1秒前
少吃顿饭并不难完成签到 ,获得积分10
2秒前
珠珠发布了新的文献求助10
2秒前
2秒前
刘三哥完成签到 ,获得积分10
3秒前
隐形曼青应助leederay采纳,获得10
4秒前
上官若男应助to_ooooo采纳,获得10
4秒前
海阔天空发布了新的文献求助10
5秒前
顺心羊完成签到,获得积分10
5秒前
科研_小白完成签到,获得积分10
5秒前
XJTU_jyh完成签到,获得积分10
6秒前
TheaGao完成签到 ,获得积分10
6秒前
不是省油的灯完成签到 ,获得积分10
8秒前
10秒前
10秒前
bububu完成签到,获得积分10
11秒前
nanaki完成签到,获得积分10
11秒前
12秒前
小蘑菇应助lin采纳,获得10
13秒前
13秒前
14秒前
czcz发布了新的文献求助10
14秒前
Sean完成签到 ,获得积分10
17秒前
雷桑发布了新的文献求助10
17秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
18秒前
Saint完成签到,获得积分10
19秒前
19秒前
零点起步完成签到,获得积分10
20秒前
认真丹亦完成签到 ,获得积分10
21秒前
时光完成签到,获得积分10
22秒前
23秒前
23秒前
科目三应助范先生采纳,获得10
23秒前
24秒前
神奇的海螺完成签到,获得积分10
24秒前
dong东包发布了新的文献求助10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066