Geometrically nonlinear shape sensing of anisotropic composite beam structure using iFEM algorithm and third-order shear deformation theory

非线性系统 离散化 有限元法 各向异性 材料科学 变形(气象学) 位移场 数学分析 几何学 结构工程 数学 机械 复合材料 工程类 物理 光学 量子力学
作者
Feifei Zhao,Ruxu Du,Junli Wang,Feng Zhang,Hong Bao
出处
期刊:Composite Structures [Elsevier]
卷期号:322: 117364-117364 被引量:4
标识
DOI:10.1016/j.compstruct.2023.117364
摘要

The inverse finite element method (iFEM) has been used to achieve the shape sensing of small displacements based on linear elastic theory. However, with the development of smart structure technology, the formulation is not suitable for the anisotropic composite structures with large deformation in practical engineering. Therefore, a nonlinear iFEM algorithm is proposed to monitor the linear and nonlinear deformation of the anisotropic composite beams. The formulation not only involves the effect of orientation of composite fibers on strain distribution into the shape sensing model, but also accounts for the effect of shear deformation without any requirement of shear correction factor. Initially, the third-order shear deformation theory (TSDT) is reviewed along with deriving the nonlinear strain field based on von-Karman strain theory. Considering the problem that the couple term of the shear strain and bending strain is unmeasurable, the relationship between shear and bending displacements is established according to the derived constitutive equations. Then, the proposed nonlinear iFEM method reconstructs the deformed structural shape, where isogeometric analysis (IGA) approach is used to construct the displacement functions and the experimental section strains are calculated from the discretized surface strains. Finally, several examples are solved to verify the proposed methodology. Numerical results demonstrate that the nonlinear iFEM algorithm can improve the reconstruction accuracy by 4% with respect to the linear iFEM method for beam structures. Hence, the proposed approach can be used as a viable tool to predict nonlinear deformation of composite structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃六湿人李大劲完成签到,获得积分10
刚刚
菠萝吹雪完成签到,获得积分10
1秒前
调皮惜天发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
fangfang完成签到,获得积分10
2秒前
gusgusgus完成签到,获得积分10
2秒前
12345完成签到,获得积分10
2秒前
蓝色白羊发布了新的文献求助10
3秒前
yyy0820发布了新的文献求助10
3秒前
茶米发布了新的文献求助10
3秒前
3秒前
桂花乌龙完成签到,获得积分10
3秒前
zs完成签到 ,获得积分10
3秒前
Jinna706完成签到,获得积分10
3秒前
4秒前
mryjdy发布了新的文献求助10
4秒前
化学小白发布了新的文献求助10
5秒前
11111发布了新的文献求助10
5秒前
蘑菇丰收发布了新的文献求助10
6秒前
SciGPT应助玉米采纳,获得10
6秒前
6秒前
6秒前
7秒前
是啊余啊完成签到,获得积分10
7秒前
7秒前
Yxian发布了新的文献求助10
7秒前
Singularity应助dwd1w采纳,获得10
7秒前
自觉冷松发布了新的文献求助10
8秒前
Littboshi关注了科研通微信公众号
9秒前
寻风完成签到,获得积分10
9秒前
11秒前
11秒前
汉堡包应助biubiuu采纳,获得10
12秒前
cheng完成签到 ,获得积分10
13秒前
111发布了新的文献求助10
13秒前
科研通AI6.1应助勤奋以山采纳,获得30
13秒前
领导范儿应助木香采纳,获得10
14秒前
勋章完成签到 ,获得积分10
14秒前
菠菜发布了新的文献求助30
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207