Geometrically nonlinear shape sensing of anisotropic composite beam structure using iFEM algorithm and third-order shear deformation theory

非线性系统 离散化 有限元法 各向异性 材料科学 变形(气象学) 位移场 数学分析 几何学 结构工程 数学 机械 复合材料 工程类 物理 光学 量子力学
作者
Feifei Zhao,Ruxu Du,Junli Wang,Feng Zhang,Hong Bao
出处
期刊:Composite Structures [Elsevier]
卷期号:322: 117364-117364 被引量:4
标识
DOI:10.1016/j.compstruct.2023.117364
摘要

The inverse finite element method (iFEM) has been used to achieve the shape sensing of small displacements based on linear elastic theory. However, with the development of smart structure technology, the formulation is not suitable for the anisotropic composite structures with large deformation in practical engineering. Therefore, a nonlinear iFEM algorithm is proposed to monitor the linear and nonlinear deformation of the anisotropic composite beams. The formulation not only involves the effect of orientation of composite fibers on strain distribution into the shape sensing model, but also accounts for the effect of shear deformation without any requirement of shear correction factor. Initially, the third-order shear deformation theory (TSDT) is reviewed along with deriving the nonlinear strain field based on von-Karman strain theory. Considering the problem that the couple term of the shear strain and bending strain is unmeasurable, the relationship between shear and bending displacements is established according to the derived constitutive equations. Then, the proposed nonlinear iFEM method reconstructs the deformed structural shape, where isogeometric analysis (IGA) approach is used to construct the displacement functions and the experimental section strains are calculated from the discretized surface strains. Finally, several examples are solved to verify the proposed methodology. Numerical results demonstrate that the nonlinear iFEM algorithm can improve the reconstruction accuracy by 4% with respect to the linear iFEM method for beam structures. Hence, the proposed approach can be used as a viable tool to predict nonlinear deformation of composite structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyy关注了科研通微信公众号
1秒前
1秒前
别当真发布了新的文献求助10
1秒前
David发布了新的文献求助10
2秒前
老高完成签到 ,获得积分10
2秒前
2秒前
陈艺鹏完成签到,获得积分10
3秒前
yyy发布了新的文献求助10
3秒前
3秒前
上官若男应助哈哈哈哈采纳,获得10
5秒前
5秒前
麻喽完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
失眠雨雪完成签到 ,获得积分10
8秒前
我要发nature完成签到,获得积分10
8秒前
Allen0520完成签到,获得积分10
8秒前
hsdhfsjbier发布了新的文献求助10
9秒前
9秒前
考马斯亮蓝完成签到 ,获得积分10
9秒前
10秒前
稳重一鸣发布了新的文献求助10
10秒前
易怀亮完成签到,获得积分10
11秒前
11秒前
核动力驴应助忠诚卫士采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
lc发布了新的文献求助30
15秒前
鳗鱼雪莲完成签到,获得积分10
15秒前
15秒前
搜集达人应助温暖的南霜采纳,获得10
16秒前
17秒前
17秒前
顾矜应助稳重一鸣采纳,获得10
18秒前
Asue完成签到,获得积分10
19秒前
21秒前
蓝色海洋发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548