Geometrically nonlinear shape sensing of anisotropic composite beam structure using iFEM algorithm and third-order shear deformation theory

非线性系统 离散化 有限元法 各向异性 材料科学 变形(气象学) 位移场 数学分析 几何学 结构工程 数学 机械 复合材料 工程类 物理 光学 量子力学
作者
Feifei Zhao,Ruxu Du,Junli Wang,Feng Zhang,Hong Bao
出处
期刊:Composite Structures [Elsevier]
卷期号:322: 117364-117364 被引量:4
标识
DOI:10.1016/j.compstruct.2023.117364
摘要

The inverse finite element method (iFEM) has been used to achieve the shape sensing of small displacements based on linear elastic theory. However, with the development of smart structure technology, the formulation is not suitable for the anisotropic composite structures with large deformation in practical engineering. Therefore, a nonlinear iFEM algorithm is proposed to monitor the linear and nonlinear deformation of the anisotropic composite beams. The formulation not only involves the effect of orientation of composite fibers on strain distribution into the shape sensing model, but also accounts for the effect of shear deformation without any requirement of shear correction factor. Initially, the third-order shear deformation theory (TSDT) is reviewed along with deriving the nonlinear strain field based on von-Karman strain theory. Considering the problem that the couple term of the shear strain and bending strain is unmeasurable, the relationship between shear and bending displacements is established according to the derived constitutive equations. Then, the proposed nonlinear iFEM method reconstructs the deformed structural shape, where isogeometric analysis (IGA) approach is used to construct the displacement functions and the experimental section strains are calculated from the discretized surface strains. Finally, several examples are solved to verify the proposed methodology. Numerical results demonstrate that the nonlinear iFEM algorithm can improve the reconstruction accuracy by 4% with respect to the linear iFEM method for beam structures. Hence, the proposed approach can be used as a viable tool to predict nonlinear deformation of composite structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
阳光襄发布了新的文献求助10
1秒前
WQ发布了新的文献求助10
1秒前
1秒前
自己发布了新的文献求助10
2秒前
2秒前
lijiaxin完成签到,获得积分10
2秒前
qwe发布了新的文献求助10
2秒前
兴奋芷发布了新的文献求助10
2秒前
高贵振家发布了新的文献求助10
3秒前
3秒前
3秒前
英俊的铭应助墨客采纳,获得30
3秒前
zhu完成签到,获得积分10
4秒前
5秒前
在水一方应助yay采纳,获得10
6秒前
Ava应助拼搏一江采纳,获得10
6秒前
搬砖人完成签到,获得积分10
6秒前
开朗的亦竹完成签到,获得积分10
7秒前
8秒前
Just森发布了新的文献求助10
8秒前
lijiaxin发布了新的文献求助10
9秒前
Orange应助自己采纳,获得10
9秒前
9秒前
犹豫大门发布了新的文献求助10
9秒前
小二郎应助等待纸飞机采纳,获得10
10秒前
10秒前
11秒前
雪山飞鹰完成签到,获得积分10
11秒前
科目三应助含糊的鞋子采纳,获得10
11秒前
袁翰将军发布了新的文献求助10
11秒前
Donger完成签到 ,获得积分10
11秒前
昏睡的向真完成签到 ,获得积分10
12秒前
2368372311完成签到 ,获得积分20
12秒前
12秒前
哈利柯京发布了新的文献求助10
13秒前
雪山飞鹰发布了新的文献求助10
13秒前
淡定身影发布了新的文献求助10
13秒前
14秒前
森活鱼块完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265