亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A heterogeneous network embedded medicine recommendation system based on LSTM

计算机科学 推荐系统 预处理器 过程(计算) 数据预处理 机器学习 新颖性 医学诊断 人工智能 循环神经网络 数据挖掘 人工神经网络 医学 哲学 神学 病理 操作系统
作者
Imran Ahmed,Misbah Ahmad,Abdellah Chehri,Gwanggil Jeon
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:149: 1-11 被引量:22
标识
DOI:10.1016/j.future.2023.07.004
摘要

In the healthcare sector, patient data plays a crucial role in medical diagnoses and treatment plans. However, existing techniques for finding similar patients based on Electronic Health Record (EHR) data face challenges due to high-dimensional and sparse vectors. To overcome this challenge, the paper proposes developing a novel heterogeneous network-embedded drug recommendation system. The system focuses on classifying the sentiment of drug users based on their reviews and other relevant features such as their medical condition, drug rating, and usage date. The overall framework of the system follows a step-by-step approach, starting with data exploration and preprocessing, followed by the development of a classification model based on Long-Short-Term Memory (LSTM) networks. During the data exploration phase, various visualization and statistical techniques are employed to analyze the different data types. This process helps in understanding the characteristics of the data, identifying patterns, and preparing the data to align with the research objective. Furthermore, additional variables are considered suitable for the LSTM model, a recurrent neural network (RNN) type designed to handle sequence data and long-term prediction problems. Unlike other models that process individual data points, LSTM incorporates feedback connections to process complete data sequences. This approach enhances the effectiveness of recommendation systems and enables the prediction of new drug user ratings based on existing user ratings. The developed system demonstrates promising results, achieving a classification accuracy of 92%. This indicates its ability to accurately predict the sentiment of drug users based on their reviews and other associated features. The novelty of this research lies in the integration of a heterogeneous network-embedded approach with LSTM-based classification, providing a more comprehensive and accurate drug recommendation system compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqaixj完成签到,获得积分20
28秒前
大个应助喊我彩彩采纳,获得10
33秒前
35秒前
41秒前
量子星尘发布了新的文献求助10
55秒前
zzzllove完成签到 ,获得积分10
1分钟前
1分钟前
英勇小伙完成签到,获得积分10
1分钟前
1分钟前
喊我彩彩发布了新的文献求助10
1分钟前
1分钟前
小玉米完成签到 ,获得积分10
2分钟前
喊我彩彩完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
CING发布了新的文献求助10
2分钟前
2分钟前
尊敬的丹烟完成签到 ,获得积分10
2分钟前
wwww完成签到 ,获得积分10
2分钟前
3分钟前
CING完成签到,获得积分10
3分钟前
clp完成签到,获得积分10
3分钟前
3分钟前
shirley要奋斗完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
andrele应助科研通管家采纳,获得10
4分钟前
jeronimo完成签到,获得积分10
4分钟前
yhgz完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
葉鳳怡完成签到 ,获得积分10
5分钟前
5分钟前
飘逸晓凡完成签到,获得积分20
5分钟前
玄音完成签到,获得积分10
5分钟前
check003完成签到,获得积分10
5分钟前
andrele应助科研通管家采纳,获得10
6分钟前
曾经不言完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128617
捐赠科研通 3238269
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069