A heterogeneous network embedded medicine recommendation system based on LSTM

计算机科学 推荐系统 预处理器 过程(计算) 数据预处理 机器学习 新颖性 医学诊断 人工智能 循环神经网络 数据挖掘 人工神经网络 操作系统 医学 哲学 病理 神学
作者
Imran Ahmed,Misbah Ahmad,Abdellah Chehri,Gwanggil Jeon
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:149: 1-11 被引量:20
标识
DOI:10.1016/j.future.2023.07.004
摘要

In the healthcare sector, patient data plays a crucial role in medical diagnoses and treatment plans. However, existing techniques for finding similar patients based on Electronic Health Record (EHR) data face challenges due to high-dimensional and sparse vectors. To overcome this challenge, the paper proposes developing a novel heterogeneous network-embedded drug recommendation system. The system focuses on classifying the sentiment of drug users based on their reviews and other relevant features such as their medical condition, drug rating, and usage date. The overall framework of the system follows a step-by-step approach, starting with data exploration and preprocessing, followed by the development of a classification model based on Long-Short-Term Memory (LSTM) networks. During the data exploration phase, various visualization and statistical techniques are employed to analyze the different data types. This process helps in understanding the characteristics of the data, identifying patterns, and preparing the data to align with the research objective. Furthermore, additional variables are considered suitable for the LSTM model, a recurrent neural network (RNN) type designed to handle sequence data and long-term prediction problems. Unlike other models that process individual data points, LSTM incorporates feedback connections to process complete data sequences. This approach enhances the effectiveness of recommendation systems and enables the prediction of new drug user ratings based on existing user ratings. The developed system demonstrates promising results, achieving a classification accuracy of 92%. This indicates its ability to accurately predict the sentiment of drug users based on their reviews and other associated features. The novelty of this research lies in the integration of a heterogeneous network-embedded approach with LSTM-based classification, providing a more comprehensive and accurate drug recommendation system compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆应助坚强依波采纳,获得10
刚刚
Yancent应助喻紫寒采纳,获得10
刚刚
1秒前
1秒前
ding应助Araa采纳,获得10
2秒前
xxx完成签到,获得积分20
2秒前
小二郎应助wwwww采纳,获得10
2秒前
3秒前
4秒前
swetcol完成签到,获得积分10
5秒前
睡觉王完成签到 ,获得积分10
5秒前
传奇3应助林旭采纳,获得10
6秒前
里已经完成签到,获得积分10
7秒前
清晨发布了新的文献求助10
8秒前
HY发布了新的文献求助10
9秒前
10秒前
guilin完成签到,获得积分20
11秒前
毛豆应助123456采纳,获得10
11秒前
11秒前
13秒前
wdd完成签到 ,获得积分10
14秒前
wwwww发布了新的文献求助10
14秒前
完美世界应助闻元杰采纳,获得10
15秒前
16秒前
天天天王完成签到,获得积分10
16秒前
陈道哥完成签到 ,获得积分10
16秒前
杨道之发布了新的文献求助10
18秒前
万能图书馆应助坚强依波采纳,获得10
19秒前
19秒前
RebeccaHe应助丽莉采纳,获得10
19秒前
ddd完成签到,获得积分10
19秒前
mc应助丽莉采纳,获得10
19秒前
我不爱池鱼应助丽莉采纳,获得10
19秒前
19秒前
搜集达人应助秀丽的诗翠采纳,获得10
20秒前
大模型应助喻紫寒采纳,获得10
20秒前
20秒前
Survivor发布了新的文献求助10
21秒前
匆匆走过完成签到 ,获得积分10
21秒前
Hyunstar发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547