已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A heterogeneous network embedded medicine recommendation system based on LSTM

计算机科学 推荐系统 预处理器 过程(计算) 数据预处理 机器学习 新颖性 医学诊断 人工智能 循环神经网络 数据挖掘 人工神经网络 医学 哲学 神学 病理 操作系统
作者
Imran Ahmed,Misbah Ahmad,Abdellah Chehri,Gwanggil Jeon
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:149: 1-11 被引量:22
标识
DOI:10.1016/j.future.2023.07.004
摘要

In the healthcare sector, patient data plays a crucial role in medical diagnoses and treatment plans. However, existing techniques for finding similar patients based on Electronic Health Record (EHR) data face challenges due to high-dimensional and sparse vectors. To overcome this challenge, the paper proposes developing a novel heterogeneous network-embedded drug recommendation system. The system focuses on classifying the sentiment of drug users based on their reviews and other relevant features such as their medical condition, drug rating, and usage date. The overall framework of the system follows a step-by-step approach, starting with data exploration and preprocessing, followed by the development of a classification model based on Long-Short-Term Memory (LSTM) networks. During the data exploration phase, various visualization and statistical techniques are employed to analyze the different data types. This process helps in understanding the characteristics of the data, identifying patterns, and preparing the data to align with the research objective. Furthermore, additional variables are considered suitable for the LSTM model, a recurrent neural network (RNN) type designed to handle sequence data and long-term prediction problems. Unlike other models that process individual data points, LSTM incorporates feedback connections to process complete data sequences. This approach enhances the effectiveness of recommendation systems and enables the prediction of new drug user ratings based on existing user ratings. The developed system demonstrates promising results, achieving a classification accuracy of 92%. This indicates its ability to accurately predict the sentiment of drug users based on their reviews and other associated features. The novelty of this research lies in the integration of a heterogeneous network-embedded approach with LSTM-based classification, providing a more comprehensive and accurate drug recommendation system compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66小鼠发布了新的文献求助10
2秒前
2秒前
1234发布了新的文献求助10
3秒前
3秒前
还不回家发布了新的文献求助10
5秒前
诺颜爱完成签到,获得积分10
5秒前
无花果应助老实天菱采纳,获得10
7秒前
10秒前
11秒前
12秒前
wanci应助紧张的怜寒采纳,获得10
15秒前
西瓜发布了新的文献求助10
15秒前
lor完成签到,获得积分10
16秒前
惊鸿完成签到 ,获得积分10
17秒前
Naturewoman完成签到,获得积分10
20秒前
23秒前
88888完成签到,获得积分10
26秒前
朝朝暮夕发布了新的文献求助10
27秒前
ding应助无题采纳,获得10
27秒前
anle完成签到 ,获得积分10
31秒前
null应助时间尘埃采纳,获得10
33秒前
科研通AI6应助88888采纳,获得10
39秒前
Akim应助热心市民小红花采纳,获得30
41秒前
44秒前
酷波er应助西米采纳,获得10
46秒前
48秒前
49秒前
49秒前
49秒前
54秒前
乔木自燃完成签到 ,获得积分10
54秒前
54秒前
56秒前
XT发布了新的文献求助10
58秒前
阿白发布了新的文献求助10
1分钟前
zzz完成签到 ,获得积分10
1分钟前
大模型应助Sylvia采纳,获得10
1分钟前
知行者完成签到 ,获得积分10
1分钟前
西米发布了新的文献求助10
1分钟前
123123完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027