亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A heterogeneous network embedded medicine recommendation system based on LSTM

计算机科学 推荐系统 预处理器 过程(计算) 数据预处理 机器学习 新颖性 医学诊断 人工智能 循环神经网络 数据挖掘 人工神经网络 医学 哲学 神学 病理 操作系统
作者
Imran Ahmed,Misbah Ahmad,Abdellah Chehri,Gwanggil Jeon
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:149: 1-11 被引量:22
标识
DOI:10.1016/j.future.2023.07.004
摘要

In the healthcare sector, patient data plays a crucial role in medical diagnoses and treatment plans. However, existing techniques for finding similar patients based on Electronic Health Record (EHR) data face challenges due to high-dimensional and sparse vectors. To overcome this challenge, the paper proposes developing a novel heterogeneous network-embedded drug recommendation system. The system focuses on classifying the sentiment of drug users based on their reviews and other relevant features such as their medical condition, drug rating, and usage date. The overall framework of the system follows a step-by-step approach, starting with data exploration and preprocessing, followed by the development of a classification model based on Long-Short-Term Memory (LSTM) networks. During the data exploration phase, various visualization and statistical techniques are employed to analyze the different data types. This process helps in understanding the characteristics of the data, identifying patterns, and preparing the data to align with the research objective. Furthermore, additional variables are considered suitable for the LSTM model, a recurrent neural network (RNN) type designed to handle sequence data and long-term prediction problems. Unlike other models that process individual data points, LSTM incorporates feedback connections to process complete data sequences. This approach enhances the effectiveness of recommendation systems and enables the prediction of new drug user ratings based on existing user ratings. The developed system demonstrates promising results, achieving a classification accuracy of 92%. This indicates its ability to accurately predict the sentiment of drug users based on their reviews and other associated features. The novelty of this research lies in the integration of a heterogeneous network-embedded approach with LSTM-based classification, providing a more comprehensive and accurate drug recommendation system compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
zyz发布了新的文献求助20
11秒前
SDNUDRUG发布了新的文献求助10
21秒前
31秒前
SDNUDRUG完成签到,获得积分10
32秒前
大模型应助隋嫣然采纳,获得10
35秒前
潦草小狗完成签到 ,获得积分10
42秒前
tutu完成签到,获得积分10
46秒前
50秒前
英俊的铭应助zyz采纳,获得10
50秒前
鲁路修完成签到,获得积分10
51秒前
1分钟前
1分钟前
1分钟前
PLEDGE完成签到,获得积分10
1分钟前
chuan发布了新的文献求助10
1分钟前
chuan完成签到,获得积分10
1分钟前
1分钟前
长街完成签到,获得积分10
1分钟前
长街发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
PengDai发布了新的文献求助200
1分钟前
2分钟前
YOGA1115发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
CodeCraft应助PengDai采纳,获得10
2分钟前
3分钟前
Meya发布了新的文献求助10
3分钟前
Meya完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Sunsheng应助娇气的亦云采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031219
求助须知:如何正确求助?哪些是违规求助? 4265993
关于积分的说明 13298383
捐赠科研通 4075084
什么是DOI,文献DOI怎么找? 2228849
邀请新用户注册赠送积分活动 1237466
关于科研通互助平台的介绍 1162231