A heterogeneous network embedded medicine recommendation system based on LSTM

计算机科学 推荐系统 预处理器 过程(计算) 数据预处理 机器学习 新颖性 医学诊断 人工智能 循环神经网络 数据挖掘 人工神经网络 医学 哲学 神学 病理 操作系统
作者
Imran Ahmed,Misbah Ahmad,Abdellah Chehri,Gwanggil Jeon
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:149: 1-11 被引量:22
标识
DOI:10.1016/j.future.2023.07.004
摘要

In the healthcare sector, patient data plays a crucial role in medical diagnoses and treatment plans. However, existing techniques for finding similar patients based on Electronic Health Record (EHR) data face challenges due to high-dimensional and sparse vectors. To overcome this challenge, the paper proposes developing a novel heterogeneous network-embedded drug recommendation system. The system focuses on classifying the sentiment of drug users based on their reviews and other relevant features such as their medical condition, drug rating, and usage date. The overall framework of the system follows a step-by-step approach, starting with data exploration and preprocessing, followed by the development of a classification model based on Long-Short-Term Memory (LSTM) networks. During the data exploration phase, various visualization and statistical techniques are employed to analyze the different data types. This process helps in understanding the characteristics of the data, identifying patterns, and preparing the data to align with the research objective. Furthermore, additional variables are considered suitable for the LSTM model, a recurrent neural network (RNN) type designed to handle sequence data and long-term prediction problems. Unlike other models that process individual data points, LSTM incorporates feedback connections to process complete data sequences. This approach enhances the effectiveness of recommendation systems and enables the prediction of new drug user ratings based on existing user ratings. The developed system demonstrates promising results, achieving a classification accuracy of 92%. This indicates its ability to accurately predict the sentiment of drug users based on their reviews and other associated features. The novelty of this research lies in the integration of a heterogeneous network-embedded approach with LSTM-based classification, providing a more comprehensive and accurate drug recommendation system compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分10
1秒前
123发布了新的文献求助10
3秒前
3秒前
神勇秋蝶完成签到,获得积分10
6秒前
6秒前
6秒前
wangruiyang完成签到 ,获得积分10
7秒前
7秒前
hyzzz关注了科研通微信公众号
7秒前
科研通AI6应助沉静语蝶采纳,获得10
7秒前
祝z完成签到,获得积分20
8秒前
8秒前
小二郎应助tianzhen采纳,获得10
9秒前
9秒前
10秒前
10秒前
Seven发布了新的文献求助10
10秒前
相爱就永远在一起完成签到,获得积分10
11秒前
不倦发布了新的文献求助10
12秒前
12秒前
yqsf789发布了新的文献求助10
13秒前
Akim应助我是AY采纳,获得20
14秒前
开兴发布了新的文献求助10
15秒前
dsg完成签到 ,获得积分10
15秒前
18秒前
千里烟泼完成签到,获得积分20
19秒前
20秒前
21秒前
王俊发布了新的文献求助10
21秒前
22秒前
junzheng完成签到,获得积分10
24秒前
meng发布了新的文献求助10
25秒前
25秒前
所所应助刘小胖采纳,获得10
25秒前
25秒前
小二郎应助37采纳,获得10
26秒前
活力的问安完成签到 ,获得积分10
26秒前
june发布了新的文献求助10
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194604
求助须知:如何正确求助?哪些是违规求助? 4376857
关于积分的说明 13630554
捐赠科研通 4232015
什么是DOI,文献DOI怎么找? 2321314
邀请新用户注册赠送积分活动 1319495
关于科研通互助平台的介绍 1269832