A user-friendly assessment of six commonly used urban growth models

文档 计算机科学 灵活性(工程) 细胞自动机 马尔可夫模型 过程(计算) 城市规划 土地利用 马尔可夫链 数据挖掘 机器学习 人工智能 工程类 统计 数学 土木工程 程序设计语言 操作系统
作者
Yuzhi Zhang,Mei‐Po Kwan,Jun Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:104: 102004-102004 被引量:5
标识
DOI:10.1016/j.compenvurbsys.2023.102004
摘要

An accurate grasp of urban expansion patterns is conducive to efficient urban management and planning. Various urban growth models have been developed to meet this need in the last two decades. As more models become available, users increasingly face the challenge of choosing the right one for their purposes. In this study, we first reviewed the recent usage pattern of urban growth models (UGMs) and identified the top ten UGMs accounting for 73.3% of total usage from 2000 to 2021. We then compared the performance of six commonly used UGMs in simulating urban expansion, including the Cellular Automata-Markov model (CA-Markov), Slope, land use, excluded layer, urban extent, transportation, hillshade (SLEUTH), Conversion of Land Use and its Effects at Small extent model (CLUE-S), Future land use simulation model (FLUS), Land Use Scenario Dynamics model (LUSD), and Land Change Modeler (LCM). The behaviors of the six models were verified against descriptions in the model's documentation. We also analyzed the models' documentation, focusing on data requirements and the user's flexibility in the modeling process. The results showed that the validation accuracies of the models varied with the inputted data, indicating a model does not have an intrinsic accuracy. CA-Markov, FLUS, LUSD, and LCM could be verified, while CLUE-S and SLEUTH failed to meet some verification criteria. In addition, SLEUTH has the highest requirement for input data among all studied models. FLUS and LCM allow for higher user flexibility in modeling than others. This study's findings can help users decide which of the six urban growth models suits them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
是猪毛啊完成签到,获得积分10
2秒前
深情安青应助資鼒采纳,获得10
3秒前
科研通AI2S应助goodjust采纳,获得10
3秒前
袁来如此完成签到,获得积分10
5秒前
owlhealth发布了新的文献求助10
5秒前
5秒前
Lucas应助yyymmma采纳,获得10
6秒前
7秒前
bkagyin应助雪碧没气采纳,获得10
7秒前
脑洞疼应助体贴的绿茶采纳,获得10
8秒前
10秒前
星辰大海应助无心的夜柳采纳,获得10
11秒前
万能图书馆应助刻苦惜萍采纳,获得10
11秒前
11秒前
红细胞发布了新的文献求助10
11秒前
12秒前
mhl11应助夫毕佐采纳,获得10
13秒前
14秒前
16秒前
猫猫虫发布了新的文献求助10
16秒前
优秀元枫完成签到,获得积分10
16秒前
大葡萄发布了新的文献求助10
16秒前
17秒前
17秒前
Xhgl发布了新的文献求助10
17秒前
痴情的萃发布了新的文献求助10
17秒前
曹操的曹发布了新的文献求助10
18秒前
18秒前
資鼒完成签到,获得积分10
19秒前
20秒前
马李啸发布了新的文献求助10
20秒前
虚心的冷雪完成签到,获得积分20
21秒前
小杰完成签到 ,获得积分10
22秒前
大个应助xchu采纳,获得10
22秒前
乐乐应助LmaPN7采纳,获得30
22秒前
23秒前
南音发布了新的文献求助10
23秒前
芋头发布了新的文献求助10
23秒前
魔镜魔镜关注了科研通微信公众号
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301649
求助须知:如何正确求助?哪些是违规求助? 2936248
关于积分的说明 8476984
捐赠科研通 2610006
什么是DOI,文献DOI怎么找? 1424988
科研通“疑难数据库(出版商)”最低求助积分说明 662216
邀请新用户注册赠送积分活动 646340