A user-friendly assessment of six commonly used urban growth models

文档 计算机科学 灵活性(工程) 细胞自动机 马尔可夫模型 过程(计算) 城市规划 土地利用 马尔可夫链 数据挖掘 机器学习 人工智能 工程类 统计 数学 土木工程 程序设计语言 操作系统
作者
Yuzhi Zhang,Mei‐Po Kwan,Jun Yang
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:104: 102004-102004 被引量:5
标识
DOI:10.1016/j.compenvurbsys.2023.102004
摘要

An accurate grasp of urban expansion patterns is conducive to efficient urban management and planning. Various urban growth models have been developed to meet this need in the last two decades. As more models become available, users increasingly face the challenge of choosing the right one for their purposes. In this study, we first reviewed the recent usage pattern of urban growth models (UGMs) and identified the top ten UGMs accounting for 73.3% of total usage from 2000 to 2021. We then compared the performance of six commonly used UGMs in simulating urban expansion, including the Cellular Automata-Markov model (CA-Markov), Slope, land use, excluded layer, urban extent, transportation, hillshade (SLEUTH), Conversion of Land Use and its Effects at Small extent model (CLUE-S), Future land use simulation model (FLUS), Land Use Scenario Dynamics model (LUSD), and Land Change Modeler (LCM). The behaviors of the six models were verified against descriptions in the model's documentation. We also analyzed the models' documentation, focusing on data requirements and the user's flexibility in the modeling process. The results showed that the validation accuracies of the models varied with the inputted data, indicating a model does not have an intrinsic accuracy. CA-Markov, FLUS, LUSD, and LCM could be verified, while CLUE-S and SLEUTH failed to meet some verification criteria. In addition, SLEUTH has the highest requirement for input data among all studied models. FLUS and LCM allow for higher user flexibility in modeling than others. This study's findings can help users decide which of the six urban growth models suits them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lc完成签到,获得积分10
1秒前
Friday完成签到,获得积分20
2秒前
lor完成签到,获得积分10
2秒前
张道微发布了新的文献求助10
3秒前
医者修心完成签到,获得积分20
3秒前
太叔夜南完成签到,获得积分10
4秒前
zhl发布了新的文献求助10
4秒前
SciGPT应助mingming采纳,获得10
5秒前
勤恳凤完成签到,获得积分10
5秒前
6秒前
我是老大应助U9A采纳,获得10
6秒前
可爱的函函应助高院士采纳,获得10
7秒前
7秒前
eve2021完成签到,获得积分10
8秒前
10秒前
渔渔发布了新的文献求助30
10秒前
樱花恋发布了新的文献求助10
10秒前
阿克66发布了新的文献求助10
11秒前
W~舞发布了新的文献求助10
11秒前
深情安青应助正直的以亦采纳,获得10
12秒前
15秒前
15秒前
祺仔应助冬天雪山茶采纳,获得10
16秒前
17秒前
张道微完成签到,获得积分10
19秒前
19秒前
wenbin发布了新的文献求助10
19秒前
努力完成签到,获得积分10
19秒前
来自三百完成签到,获得积分10
20秒前
21秒前
了一完成签到,获得积分10
21秒前
歪比巴卜发布了新的文献求助10
22秒前
泡泡糖发布了新的文献求助10
22秒前
Lesley完成签到 ,获得积分10
23秒前
23秒前
wenbin完成签到,获得积分10
24秒前
Erika发布了新的文献求助10
24秒前
研友_Y59785应助火星上雨珍采纳,获得10
24秒前
ss发布了新的文献求助10
25秒前
丘比特应助温暖的沛凝采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712