Challenges and opportunities towards silicon-based all-solid-state batteries

材料科学 阳极 纳米技术 电解质 锂(药物) 阴极 工程物理 快离子导体 固态 电气工程 光电子学 电极 工程类 内分泌学 物理化学 化学 医学
作者
Xiao Zhan,Miao Li,Sha Li,Xikun Pang,Fangqin Mao,Peng Wang,Zhefei Sun,Xiang Han,Bing Jiang,Yan‐Bing He,Meicheng Li,Qiaobao Zhang,Li Zhang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:61: 102875-102875 被引量:39
标识
DOI:10.1016/j.ensm.2023.102875
摘要

Silicon-based all-solid-state batteries (Si-based ASSBs) are recognized as the most promising alternatives to lithium-based (Li-based) ASSBs due to their low-cost, high-energy density, and reliable safety. In this review, we describe in detail the electro-chemo-mechanical behavior of Si anode during cycling, including the lithiation mechanism, volume expansion, dynamic solid-electrolyte-interphase (SEI) reconstruction of Si anode, the evolution and effect of stress in Si-based ASSBs as well. We also comprehensively summarize the development of all-solid-state electrolytes (ASSEs, e.g., LiPON, sulfide, garnet, and polymer) and structural designs of Si anodes (e.g., nano-structure and composite structure) in Si-based ASSBs. Moreover, we elaborate in detail the challenges and strategies towards high-voltage cathodes of Si-based ASSBs for further construction and application of full batteries. Hence, the significant research advancements of Si-based ASSBs from fundamentals to applications are presented in detail. Finally, we propose some rational suggestions and prospects for in-depth research on failure mechanisms and the further development of ASSEs and Si-based anodes in Si-based ASSBs. We hope that this review will provide valuable insights into failure mechanisms and advanced optimization strategies for the development of next-generation Si-based ASSBs, and bridge the gap between fundamental research and practical applications, particularly for the readers who are new to this field and have an interest in it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CWNU_HAN应助上下采纳,获得30
刚刚
李爱国应助迷路访云采纳,获得10
1秒前
优雅的纸鹤完成签到,获得积分10
1秒前
2秒前
酷酷豪发布了新的文献求助10
4秒前
4秒前
lyx关闭了lyx文献求助
5秒前
6秒前
bkagyin应助王美丽采纳,获得10
7秒前
believe发布了新的文献求助30
8秒前
jj完成签到,获得积分10
8秒前
9秒前
在水一方应助可可西里采纳,获得10
10秒前
liangmh发布了新的文献求助10
11秒前
小蕾完成签到 ,获得积分10
11秒前
12秒前
shao完成签到,获得积分10
13秒前
14秒前
14秒前
优秀傲之完成签到,获得积分20
14秒前
15秒前
桐桐应助花痴的pumpkin采纳,获得10
15秒前
16秒前
羅梅子发布了新的文献求助10
17秒前
18秒前
19秒前
qqw发布了新的文献求助30
20秒前
浮世完成签到,获得积分10
20秒前
彭医生发布了新的文献求助10
20秒前
20秒前
难过的糜完成签到,获得积分10
21秒前
gaoww发布了新的文献求助10
21秒前
21秒前
22秒前
满三江完成签到,获得积分10
24秒前
隐形曼青应助李子衡采纳,获得20
24秒前
25秒前
王美贤发布了新的文献求助10
25秒前
星辰大海应助hotzera采纳,获得10
26秒前
Akim应助hotzera采纳,获得10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149647
求助须知:如何正确求助?哪些是违规求助? 2800710
关于积分的说明 7841396
捐赠科研通 2458270
什么是DOI,文献DOI怎么找? 1308367
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706