计算机科学
航向(导航)
PID控制器
控制理论(社会学)
全球定位系统
雷达
跟踪(教育)
计算机视觉
控制工程
障碍物
点云
无人机
点(几何)
人工智能
工程类
控制(管理)
数学
电信
航空航天工程
海洋工程
法学
温度控制
教育学
政治学
心理学
几何学
标识
DOI:10.1109/isas59543.2023.10164429
摘要
In this paper, based on the principle of attachment coordinate system and Maneuvering Modeling Group modeling principle, the motion model is constructed. The fuzzy PID control algorithm is used to design the heading controller and the track point tracking algorithm. The motion model is simulated and designed to realize the track point tracking. The method of fuzzy inference is used to overcome the shortcomings of the traditional PID control that cannot modify the PID parameters online. At the same time, pre-processing of point cloud data and LIDAR-based obstacle detection are realized. Experimental results verify the accuracy of model design and the effectiveness of autonomous navigation control design.
科研通智能强力驱动
Strongly Powered by AbleSci AI