Research on aging mechanism and state of health prediction in lithium batteries

健康状况 内阻 电池(电) 锂(药物) 可靠性工程 锂离子电池 机制(生物学) 工作(物理) 可靠性(半导体) 汽车工程 过程(计算) 计算机科学 功率(物理) 工程类 机械工程 医学 哲学 物理 认识论 量子力学 内分泌学 操作系统
作者
Jing Zeng,Sifeng Liu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108274-108274 被引量:67
标识
DOI:10.1016/j.est.2023.108274
摘要

In recent years, in order to reduce vehicle exhaust emissions and alleviate the energy crisis, new energy vehicles have been rapidly developed. With the improvement of the performance and driving range of electric vehicles, the power and capacity of lithium batteries are increasing, and their safety and reliability are becoming increasingly important. The micro fuzziness, evolution complexity and actual variability of lithium battery performance make it difficult to characterize its aging, and the estimation deviation of its state of health (SOH) is large. It is urgent to deeply explore the mechanism of internal capacity decline and establish a reasonable mathematical model to realize the quantitative evaluation of microscopic reaction process. In this work, the aging factors of lithium batteries are classified, and the influence of positive and negative aging of battery on lithium battery is analyzed. The aging mechanism of lithium battery is divided into the loss of active lithium ion (LLI), the loss of active material (LAM) and the increase of internal resistance. The failure mechanism of positive and negative electrode materials, electrolyte and current collectors during battery aging is systematically analyzed. Considering the actual operating conditions of lithium battery, the external aging factors are clarified. The main mathematical models of capacity decline and SOH prediction are summarized. This work can provide reference for the construction of aging model, SOH prediction model, and provide theoretical basis for the design of lithium battery management system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求知欲发布了新的文献求助10
刚刚
泡儿夫完成签到,获得积分10
刚刚
1秒前
烟花应助alexyang采纳,获得10
2秒前
Frank应助过时的小海豚采纳,获得10
2秒前
专注白昼完成签到,获得积分10
3秒前
小青椒应助little elvins采纳,获得30
3秒前
3秒前
淳恨战士完成签到,获得积分10
4秒前
狂野傲珊发布了新的文献求助10
4秒前
tianchen完成签到,获得积分10
5秒前
高屋建瓴完成签到,获得积分10
5秒前
wonderful发布了新的文献求助10
5秒前
wanci应助端庄煎饼采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
时光悠应助科研的小狗采纳,获得30
6秒前
顾矜应助猪猪hero采纳,获得10
7秒前
我不吃葱完成签到 ,获得积分10
8秒前
逍遥关注了科研通微信公众号
8秒前
8秒前
爱笑的冷风完成签到,获得积分10
8秒前
复杂曼梅发布了新的文献求助10
8秒前
干昕慈发布了新的文献求助20
8秒前
9秒前
9秒前
10秒前
11秒前
LL发布了新的文献求助10
11秒前
wanci应助白粥采纳,获得10
12秒前
猪猪hero发布了新的文献求助10
13秒前
123455完成签到,获得积分10
13秒前
耿耿完成签到,获得积分20
13秒前
14秒前
烦烦烦发布了新的文献求助30
14秒前
jiaxiang完成签到,获得积分20
14秒前
AHU_Why发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483