Research on aging mechanism and state of health prediction in lithium batteries

健康状况 内阻 电池(电) 锂(药物) 可靠性工程 锂离子电池 机制(生物学) 工作(物理) 可靠性(半导体) 汽车工程 过程(计算) 计算机科学 功率(物理) 工程类 机械工程 医学 哲学 物理 认识论 量子力学 内分泌学 操作系统
作者
Jing Zeng,Sifeng Liu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108274-108274 被引量:67
标识
DOI:10.1016/j.est.2023.108274
摘要

In recent years, in order to reduce vehicle exhaust emissions and alleviate the energy crisis, new energy vehicles have been rapidly developed. With the improvement of the performance and driving range of electric vehicles, the power and capacity of lithium batteries are increasing, and their safety and reliability are becoming increasingly important. The micro fuzziness, evolution complexity and actual variability of lithium battery performance make it difficult to characterize its aging, and the estimation deviation of its state of health (SOH) is large. It is urgent to deeply explore the mechanism of internal capacity decline and establish a reasonable mathematical model to realize the quantitative evaluation of microscopic reaction process. In this work, the aging factors of lithium batteries are classified, and the influence of positive and negative aging of battery on lithium battery is analyzed. The aging mechanism of lithium battery is divided into the loss of active lithium ion (LLI), the loss of active material (LAM) and the increase of internal resistance. The failure mechanism of positive and negative electrode materials, electrolyte and current collectors during battery aging is systematically analyzed. Considering the actual operating conditions of lithium battery, the external aging factors are clarified. The main mathematical models of capacity decline and SOH prediction are summarized. This work can provide reference for the construction of aging model, SOH prediction model, and provide theoretical basis for the design of lithium battery management system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JinQ完成签到,获得积分10
1秒前
1秒前
坚定冰海完成签到,获得积分10
2秒前
3秒前
KM比比发布了新的文献求助10
3秒前
Rainstorm27完成签到,获得积分10
3秒前
清清完成签到,获得积分20
3秒前
钦钦小豆包完成签到,获得积分10
3秒前
4秒前
hhh完成签到,获得积分20
4秒前
NexusExplorer应助美好蜻蜓采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
Hello应助科研通管家采纳,获得30
5秒前
所所应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
吴旭东完成签到,获得积分10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
调皮冰姬应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
寻道图强应助科研通管家采纳,获得50
5秒前
薯薯完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
苗条而大河完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小Y应助科研通管家采纳,获得20
5秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
晚若旧完成签到,获得积分10
6秒前
avalanche应助科研通管家采纳,获得20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769