DRNet: Dual-stage refinement network with boundary inference for RGB-D semantic segmentation of indoor scenes

计算机科学 人工智能 分割 模式识别(心理学) 尺度空间分割 图像分割 基于分割的对象分类 增采样 卷积神经网络 推论 计算机视觉 图像(数学)
作者
Enquan Yang,Wujie Zhou,Xiaohong Qian,Jingsheng Lei,Lu Yu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106729-106729 被引量:21
标识
DOI:10.1016/j.engappai.2023.106729
摘要

Semantic segmentation is a dense pixel prediction task, and its accuracy depends on the extraction of long-range contextual knowledge and refinement of segmentation boundaries. Most segmentation methods are based on feature extraction using a convolutional neural network, and layer-by-layer sampling and fusion are applied to solve inherent problems such as chaotic boundaries and scattered objects. Owing to the limited receptive field and loss of details during downsampling, the segmentation results may be unsatisfactory. To address existing shortcomings, we propose a dual-stage refinement network (DRNet) for semantic segmentation. In the first stage, we adopt an efficient spatiotemporal representation learning framework called UniFormer. We also use a novel boundary extractor and initial segmentation map generator to obtain rough segmentation results. In the second stage, we use the rough segmentation map and extracted boundary information in a graph reasoning module that restores the class boundary features while completing global modeling and local information inference. Benefiting from the acquisition of long-range dependencies between image pixels, contextual information promotes the distinction of pixel categories. In addition, edge information can increase the interclass distinguishability and refine the segmentation boundaries. Results from extensive experiments demonstrate that the proposed DRNet outperforms state-of-the-art semantic segmentation methods. The codes and results are available at: https://github.com/EnquanYang2022/DRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卢彦冬完成签到,获得积分10
1秒前
dddd完成签到,获得积分10
2秒前
温冰雪完成签到,获得积分10
5秒前
大秋哥哈拉少完成签到,获得积分10
6秒前
光亮代玉完成签到 ,获得积分10
7秒前
8秒前
9秒前
JianYugen完成签到,获得积分0
11秒前
JX完成签到 ,获得积分10
11秒前
12秒前
沉默的无施完成签到,获得积分10
12秒前
深情千雁完成签到,获得积分10
14秒前
19秒前
23秒前
立军发布了新的文献求助10
24秒前
小白发布了新的文献求助10
24秒前
24秒前
Mano发布了新的文献求助10
25秒前
27秒前
28秒前
28秒前
汉堡包应助小白采纳,获得10
29秒前
谢地发布了新的文献求助10
31秒前
32秒前
snsut发布了新的文献求助10
35秒前
mqq发布了新的文献求助10
35秒前
木头马尾应助谢地采纳,获得10
37秒前
37秒前
37秒前
丘比特应助青大最亮的仔采纳,获得10
38秒前
39秒前
222123完成签到,获得积分10
39秒前
无花果应助默默的冬菱采纳,获得10
40秒前
42秒前
snsut完成签到,获得积分10
42秒前
爆米花应助无心的夏烟采纳,获得10
42秒前
Ran发布了新的文献求助10
43秒前
Eternity完成签到,获得积分10
46秒前
Akim应助傲娇的冷亦采纳,获得10
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997