Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions

可穿戴计算机 深度学习 可穿戴技术 人工智能 计算机科学 数据科学 活动识别 机器学习 动物健康 领域(数学) 动物福利 人机交互 医学 嵌入式系统 生物 兽医学 数学 纯数学 生态学
作者
Axiu Mao,Endai Huang,Xiaoshuai Wang,Kai Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108043-108043 被引量:39
标识
DOI:10.1016/j.compag.2023.108043
摘要

Animal behavior, as one of the most crucial indicators of animal health and welfare, provides rich insights into animal physical and mental states. Automated animal activity recognition (AAR) allows caretakers to monitor animal behavioral variations in real time, significantly reducing workloads and costs in veterinary clinics and promoting livestock management efficiency. With recent advances in sensing technologies and smart computing techniques, automated AAR has been increasingly studied, and tremendous successes have been achieved. This paper provides a comprehensive summary of recent research on AAR based on wearable sensors and deep learning algorithms. First, the commonly used sensor types and frequently studied animal species and activities are described. Then, an extensive overview of deep learning-based methods for wearable sensor-aided AAR is presented, according to the taxonomy of deep learning algorithms. We also provide a comprehensive list of publicly available datasets collected via wearable sensor-aided AAR over the past five years. This list can serve as a valuable resource for readers who wish to further explore the field of AAR. In addition, we discuss potential challenges associated with the development of deep learning models for AAR and suggest potential solutions and future research directions for these challenges. In conclusion, this review work provides rich inspiration for the future advancement of robust AAR systems based on wearable sensors and deep learning techniques. When combined with qualitative assessments of veterinary specialists, the accurate and quantitative results obtained by automated AAR systems hold the potential to significantly improve animal health and welfare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Labubu完成签到 ,获得积分20
刚刚
Owen应助yan采纳,获得10
刚刚
KK完成签到 ,获得积分10
2秒前
3秒前
lulu完成签到,获得积分20
4秒前
又活了一天完成签到 ,获得积分10
4秒前
5秒前
5秒前
YUMI发布了新的文献求助10
6秒前
脑洞疼应助老迟到的灵煌采纳,获得10
6秒前
肖战的笑发布了新的文献求助10
7秒前
7秒前
小研完成签到 ,获得积分10
7秒前
杨冠渊完成签到,获得积分20
8秒前
8秒前
9秒前
lan发布了新的文献求助10
10秒前
科研通AI5应助阳光向秋采纳,获得10
10秒前
猪猪hero应助CYY采纳,获得10
10秒前
otaro发布了新的文献求助30
10秒前
xjn发布了新的文献求助10
11秒前
11秒前
j1kxm完成签到,获得积分10
12秒前
无言发布了新的文献求助10
12秒前
13秒前
lele200218发布了新的文献求助10
13秒前
一次过发布了新的文献求助10
14秒前
肖战的笑完成签到,获得积分10
15秒前
赐梦完成签到,获得积分10
15秒前
科研通AI5应助ling采纳,获得10
15秒前
15秒前
qianqian_wang完成签到,获得积分10
16秒前
16秒前
薛定谔发布了新的文献求助10
17秒前
17秒前
hejiacheng发布了新的文献求助10
17秒前
19秒前
20秒前
puzhongjiMiQ发布了新的文献求助10
20秒前
otaro完成签到,获得积分10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745787
求助须知:如何正确求助?哪些是违规求助? 3288729
关于积分的说明 10060328
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649984
邀请新用户注册赠送积分活动 785655
科研通“疑难数据库(出版商)”最低求助积分说明 751204