Mendelian Randomization Using the Druggable Genome Reveals Genetically Supported Drug Targets for Psychiatric Disorders

孟德尔随机化 双相情感障碍 表达数量性状基因座 全基因组关联研究 精神分裂症(面向对象编程) 重性抑郁障碍 可药性 遗传学 精神科 医学 候选基因 基因 生物信息学 生物 单核苷酸多态性 遗传变异 基因型 认知
作者
Xiaoyan Li,Aotian Shen,Yiran Zhao,Junfeng Xia
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
卷期号:49 (5): 1305-1315 被引量:4
标识
DOI:10.1093/schbul/sbad100
摘要

Psychiatric disorders impose a huge health and economic burden on modern society. However, there is currently no proven completely effective treatment available, partly owing to the inefficiency of drug target identification and validation. We aim to identify therapeutic targets relevant to psychiatric disorders by conducting Mendelian randomization (MR) analysis.We performed genome-wide MR analysis by integrating expression quantitative trait loci (eQTL) of 4479 actionable genes that encode druggable proteins and genetic summary statistics from genome-wide association studies of psychiatric disorders. After conducting colocalization analysis on the brain MR findings, we employed protein quantitative trait loci (pQTL) data as genetic proposed instruments for intersecting the colocalized genes to provide further genetic evidence.By performing MR and colocalization analysis with eQTL genetic instruments, we obtained 31 promising drug targets for psychiatric disorders, including 21 significant genes for schizophrenia, 7 for bipolar disorder, 2 for depression, 1 for attention deficit and hyperactivity (ADHD) and none for autism spectrum disorder. Combining MR results using pQTL genetic instruments, we finally proposed 8 drug-targeting genes supported by the strongest MR evidence, including gene ACE, BTN3A3, HAPLN4, MAPK3 and NEK4 for schizophrenia, gene NEK4 and HAPLN4 for bipolar disorder, and gene TIE1 for ADHD.Our findings with genetic support were more likely to be to succeed in clinical trials. In addition, our study prioritizes approved drug targets for the development of new therapies and provides critical drug reuse opportunities for psychiatric disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUKAILIMAI发布了新的文献求助10
刚刚
杨蒙完成签到,获得积分10
刚刚
刚刚
aurora发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
7777juju完成签到,获得积分10
2秒前
李欣超完成签到 ,获得积分10
3秒前
Lucas应助小鲨鱼采纳,获得10
3秒前
3秒前
wzl12306完成签到,获得积分10
3秒前
Lucifer发布了新的文献求助10
4秒前
搞怪的友桃完成签到,获得积分10
4秒前
4秒前
blackbird完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
笨笨翰完成签到,获得积分10
5秒前
5秒前
科研通AI6应助houruibut采纳,获得10
5秒前
caizhizhao发布了新的文献求助10
5秒前
平常的仙人掌完成签到,获得积分10
6秒前
丘比特应助知了采纳,获得10
6秒前
6秒前
qinxue完成签到,获得积分10
6秒前
孙漪发布了新的文献求助10
6秒前
ShawnJohn应助可不是我嘛采纳,获得10
6秒前
7秒前
7秒前
JingZZ完成签到,获得积分20
7秒前
宜菏发布了新的文献求助10
7秒前
hallo完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
gy发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274