Exploring Hard Samples in Multiview for Few-Shot Remote Sensing Scene Classification

计算机科学 判别式 边界判定 人工智能 任务(项目管理) 学习迁移 特征(语言学) 边界(拓扑) 遥感 机器学习 数据挖掘 支持向量机 数学分析 哲学 地质学 经济 管理 语言学 数学
作者
Yuyu Jia,Junyu Gao,Wei Huang,Yuan Yuan,Qi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:10
标识
DOI:10.1109/tgrs.2023.3295129
摘要

Few-shot remote sensing scene classification is of high practical value in real situations where data are scarce and annotated costly. The few-shot learner needs to identify new categories with limited examples, and the core issue of this assignment is how to prompt the model to learn transferable knowledge from a large-scale base dataset. Although current approaches based on transfer learning or meta-learning have achieved significant performance on this task, there are still two problems to be addressed: (i) as an essential characteristic of remote sensing images, spatial rotation insensitivity surprisingly remains largely unexplored; (ii) the high distribution uncertainty of hard samples reduces the discriminative power of the model decision boundary. Stimulated by these, we propose a corresponding end-to-end framework termed a Hard Sample Learning (HSL) and Multi-view Integration (MI) Network (HSL-MINet). First, the MI module contains a pretext task introduced to guide the knowledge transfer, and a multiview-attention mechanism used to extract correlational information across different rotation views of images. Second, aiming at increasing the discrimination of the model decision boundary, the HSL module is designed to evaluate and select hard samples via a class-wise adaptive threshold strategy, and then decrease the uncertainty of their feature distributions by a devised triplet loss. Extensive evaluations on NWPU-RESISC45, WHU-RS19, and UCM datasets show that the effectiveness of our HSL-MINet surpasses the former state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
lio关闭了lio文献求助
4秒前
汉堡包应助可爱的黑猫采纳,获得10
8秒前
8秒前
8秒前
9秒前
YAO完成签到,获得积分10
9秒前
大模型应助XS_QI采纳,获得10
9秒前
9秒前
YULIA完成签到,获得积分10
9秒前
明理尔安发布了新的文献求助10
11秒前
12完成签到,获得积分20
13秒前
13秒前
xuyun发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
SciGPT应助ocean采纳,获得10
15秒前
CodeCraft应助七月采纳,获得10
16秒前
ZZ发布了新的文献求助10
16秒前
17秒前
YAO发布了新的文献求助10
17秒前
ED应助LOWRY采纳,获得10
19秒前
共享精神应助奋斗的冬云采纳,获得10
20秒前
lanren666发布了新的文献求助10
20秒前
李健应助xuyun采纳,获得10
20秒前
20秒前
小郭子发布了新的文献求助10
20秒前
20秒前
斯文败类应助健忘曼彤采纳,获得10
21秒前
希望天下0贩的0应助swj采纳,获得10
22秒前
Amb1tionG发布了新的文献求助10
25秒前
27秒前
SYLH应助健忘捕采纳,获得20
29秒前
31秒前
jackhlj完成签到,获得积分10
31秒前
星辰大海应助研友_Zb1rln采纳,获得10
32秒前
Xuecong关注了科研通微信公众号
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234