亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Hard Samples in Multiview for Few-Shot Remote Sensing Scene Classification

计算机科学 判别式 边界判定 人工智能 任务(项目管理) 学习迁移 特征(语言学) 边界(拓扑) 遥感 机器学习 数据挖掘 支持向量机 数学 数学分析 语言学 哲学 管理 经济 地质学
作者
Yuyu Jia,Junyu Gao,Wei Huang,Yuan Yuan,Qi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:10
标识
DOI:10.1109/tgrs.2023.3295129
摘要

Few-shot remote sensing scene classification is of high practical value in real situations where data are scarce and annotated costly. The few-shot learner needs to identify new categories with limited examples, and the core issue of this assignment is how to prompt the model to learn transferable knowledge from a large-scale base dataset. Although current approaches based on transfer learning or meta-learning have achieved significant performance on this task, there are still two problems to be addressed: (i) as an essential characteristic of remote sensing images, spatial rotation insensitivity surprisingly remains largely unexplored; (ii) the high distribution uncertainty of hard samples reduces the discriminative power of the model decision boundary. Stimulated by these, we propose a corresponding end-to-end framework termed a Hard Sample Learning (HSL) and Multi-view Integration (MI) Network (HSL-MINet). First, the MI module contains a pretext task introduced to guide the knowledge transfer, and a multiview-attention mechanism used to extract correlational information across different rotation views of images. Second, aiming at increasing the discrimination of the model decision boundary, the HSL module is designed to evaluate and select hard samples via a class-wise adaptive threshold strategy, and then decrease the uncertainty of their feature distributions by a devised triplet loss. Extensive evaluations on NWPU-RESISC45, WHU-RS19, and UCM datasets show that the effectiveness of our HSL-MINet surpasses the former state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
宇宙拿铁完成签到 ,获得积分10
13秒前
狂野的含烟完成签到 ,获得积分10
16秒前
现代天川完成签到,获得积分10
25秒前
现代天川发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
1分钟前
lovelife完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助30
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助30
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
婉莹完成签到 ,获得积分0
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
limy发布了新的文献求助10
3分钟前
huhdcid发布了新的文献求助30
3分钟前
苗条白枫完成签到 ,获得积分10
3分钟前
limy完成签到,获得积分20
3分钟前
SciGPT应助多情捕采纳,获得10
3分钟前
隐形曼青应助lawang采纳,获得10
4分钟前
希望天下0贩的0应助lawang采纳,获得10
4分钟前
Ava应助lawang采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658158
求助须知:如何正确求助?哪些是违规求助? 4817761
关于积分的说明 15080911
捐赠科研通 4816474
什么是DOI,文献DOI怎么找? 2577429
邀请新用户注册赠送积分活动 1532358
关于科研通互助平台的介绍 1491008