催化作用
无机化学
化学
电负性
钼
钼酸盐
碱金属
选择性
烯烃纤维
解吸
吸附
有机化学
作者
Yong Zhou,Aliou Sadia Traore,Deizi Peron,Alan J. Barrios,S. A. Chernyak,Massimo Corda,Оlga V. Safonova,A. Iulian Dugulan,Ovidiu Ersen,Mirella Virginie,Vitaly V. Ordomsky,Andreï Y. Khodakov
标识
DOI:10.1016/j.jechem.2023.06.019
摘要
CO2 hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes, as well as to produce valuable chemicals from renewable and abundant resources. Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons. Iron-molybdenum catalysts have found numerous applications in catalysis, but have been never evaluated in the CO2 hydrogenation. In this work, the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal (Li, Na, K, Rb, or Cs) were characterized using X-ray diffraction, hydrogen temperature-programmed reduction, CO2 temperature-programmed desorption, in-situ 57Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy. Their catalytic performance was evaluated in the CO2 hydrogenation. During the reaction conditions, the catalysts undergo the formation of an iron (II) molybdate structure, accompanied by a partial reduction of molybdenum and carbidization of iron. The rate of CO2 conversion and product selectivity strongly depend on the promoting alkali metals, and electronegativity was identified as an important factor affecting the catalytic performance. Higher CO2 conversion rates were observed with the promoters having higher electronegativity, while low electronegativity of alkali metals favors higher light olefin selectivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI