Evaluating the predictive value of glioma growth models for low-grade glioma after tumor resection

磁共振弥散成像 胶质瘤 磁共振成像 计算机科学 部分各向异性 公制(单位) 人工智能 医学 放射科 运营管理 经济 癌症研究
作者
Karin A. van Garderen,Sebastian R. van der Voort,Maarten M.J. Wijnenga,Fatih Incekara,Ahmad Alafandi,Georgios Kapsas,Renske Gahrmann,Joost W. Schouten,Hendrikus J. Dubbink,Arnaud Vincent,Martin J. van den Bent,Pim J. French,Marion Smits,Stefan Klein
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 253-263
标识
DOI:10.1109/tmi.2023.3298637
摘要

Tumor growth models have the potential to model and predict the spatiotemporal evolution of glioma in individual patients. Infiltration of glioma cells is known to be faster along the white matter tracts, and therefore structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can be used to inform the model. However, applying and evaluating growth models in real patient data is challenging. In this work, we propose to formulate the problem of tumor growth as a ranking problem, as opposed to a segmentation problem, and use the average precision (AP) as a performance metric. This enables an evaluation of the spatial pattern that does not require a volume cut-off value. Using the AP metric, we evaluate diffusion-proliferation models informed by structural MRI and DTI, after tumor resection. We applied the models to a unique longitudinal dataset of 14 patients with low-grade glioma (LGG), who received no treatment after surgical resection, to predict the recurrent tumor shape after tumor resection. The diffusion models informed by structural MRI and DTI showed a small but significant increase in predictive performance with respect to homogeneous isotropic diffusion, and the DTI-informed model reached the best predictive performance. We conclude there is a significant improvement in the prediction of the recurrent tumor shape when using a DTI-informed anisotropic diffusion model with respect to istropic diffusion, and that the AP is a suitable metric to evaluate these models. All code and data used in this publication are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ggg发布了新的文献求助80
2秒前
量子星尘发布了新的文献求助10
2秒前
shinn发布了新的文献求助10
3秒前
彭于晏应助tanmeng77采纳,获得10
4秒前
4秒前
阿屁屁猪完成签到,获得积分10
5秒前
Sid完成签到,获得积分0
5秒前
思源应助孟古采纳,获得10
7秒前
7秒前
cody发布了新的文献求助10
7秒前
7秒前
陈新完成签到,获得积分10
7秒前
8秒前
9秒前
wy完成签到,获得积分20
10秒前
10秒前
N型半导体发布了新的文献求助10
10秒前
11秒前
11秒前
领导范儿应助xin采纳,获得10
11秒前
狂野宛丝完成签到,获得积分10
11秒前
李木头发布了新的文献求助10
12秒前
Umar完成签到,获得积分10
12秒前
JamesPei应助zhuzhu采纳,获得10
12秒前
隐形曼青应助我行我素采纳,获得10
12秒前
13秒前
14秒前
helppppp发布了新的文献求助10
15秒前
小滕发布了新的文献求助10
15秒前
miio发布了新的文献求助10
16秒前
大模型应助爱笑的凡之采纳,获得10
16秒前
16秒前
JamesPei应助馒头采纳,获得10
17秒前
NING完成签到 ,获得积分10
18秒前
Pom发布了新的文献求助10
18秒前
朱巴子发布了新的文献求助30
18秒前
华123应助lins采纳,获得10
18秒前
MORNING发布了新的文献求助10
19秒前
上官若男应助FUTURE采纳,获得10
20秒前
believer完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303