A generalized method for retrieving global daily mean land surface temperature from polar-orbiting thermal infrared sensor instantaneous observations

环境科学 均方误差 中分辨率成像光谱仪 卫星 极轨道 遥感 均方根 气象学 先进超高分辨率辐射计 光谱辐射计 辐射计 白天 大气科学 数学 地理 统计 地质学 物理 量子力学 天文 光学 反射率
作者
Jia-Hao Li,Zhao-Liang Li,Xiangyang Liu,Si‐Bo Duan,Menglin Si,Guofei Shang,Xia Zhang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (19-20): 7556-7577 被引量:5
标识
DOI:10.1080/01431161.2023.2225229
摘要

Daily mean land surface temperature (LST) is a crucial indicator for investigating global long-term climate change. The polar-orbiting thermal infrared sensor (POTIRS) can provide limited instantaneous LSTs of a single day on a global scale. Several studies have developed algorithms to derive daily mean land surface temperature (DMLST) from limited instantaneous daily LST data, but these methods are restricted to using data from a single POTIRS after 2000. This study presents a generalized method for estimating global DMLST utilizing one daytime and one night-time observation from any POTIRS since 1981. The proposed method employs a simple linear regression of two instantaneous LST measurements from different observation times (once during the day and once at night) of POTIRSs based on in situ LST measurements from 227 flux stations operating in diverse climate regions globally. The results demonstrate that this simple linear regression model provides highly accurate estimates of DMLST under all-weather conditions, with a root mean square error (RMSE) value lower than 1.7 K. Additionally, the proposed method was employed to estimate DMLST from instantaneous LST products obtained from various sensors, including Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite, Advanced Very High Resolution Radiometer aboard the polar-orbiting National Oceanic and Atmospheric Administration satellite, and Meteorological Operational satellite. Validation results indicate that the DMLSTs estimated from these POTIRS products are in close agreement with the daily mean in situ LST, with RMSE values varying from 2.2 to 2.4 K. We expect that this generalized method will be useful for generating long-term and high-quality DMLST datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助小田心采纳,获得10
1秒前
joan发布了新的文献求助30
1秒前
robin发布了新的文献求助10
1秒前
xkxkii发布了新的文献求助10
1秒前
1秒前
Blank发布了新的文献求助10
2秒前
山花浪漫应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
娃哈哈完成签到,获得积分10
3秒前
彭于彦祖应助科研通管家采纳,获得20
4秒前
chanyi完成签到,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
神明发布了新的文献求助30
4秒前
5秒前
情怀应助小刘要加油采纳,获得10
6秒前
ni发布了新的文献求助10
7秒前
早晚炸了学校完成签到 ,获得积分10
7秒前
123669发布了新的文献求助10
8秒前
棠小茗完成签到 ,获得积分20
9秒前
英俊的老太完成签到,获得积分10
9秒前
9秒前
9秒前
yyd发布了新的文献求助10
10秒前
科研通AI5应助神明采纳,获得10
10秒前
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882