A practical introduction to using the drift diffusion model of decision-making in cognitive psychology, neuroscience, and health sciences

认知 认知神经科学 心理学 计算神经科学 认知科学 复制 计算模型 数据科学 认知心理学 计算机科学 人工智能 神经科学 数学 统计
作者
Catherine E. Myers,Alejandro Interian,Ahmed A. Moustafa
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:13 被引量:31
标识
DOI:10.3389/fpsyg.2022.1039172
摘要

Recent years have seen a rapid increase in the number of studies using evidence-accumulation models (such as the drift diffusion model, DDM) in the fields of psychology and neuroscience. These models go beyond observed behavior to extract descriptions of latent cognitive processes that have been linked to different brain substrates. Accordingly, it is important for psychology and neuroscience researchers to be able to understand published findings based on these models. However, many articles using (and explaining) these models assume that the reader already has a fairly deep understanding of (and interest in) the computational and mathematical underpinnings, which may limit many readers' ability to understand the results and appreciate the implications. The goal of this article is therefore to provide a practical introduction to the DDM and its application to behavioral data - without requiring a deep background in mathematics or computational modeling. The article discusses the basic ideas underpinning the DDM, and explains the way that DDM results are normally presented and evaluated. It also provides a step-by-step example of how the DDM is implemented and used on an example dataset, and discusses methods for model validation and for presenting (and evaluating) model results. Supplementary material provides R code for all examples, along with the sample dataset described in the text, to allow interested readers to replicate the examples themselves. The article is primarily targeted at psychologists, neuroscientists, and health professionals with a background in experimental cognitive psychology and/or cognitive neuroscience, who are interested in understanding how DDMs are used in the literature, as well as some who may to go on to apply these approaches in their own work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美有姬完成签到,获得积分10
刚刚
李健应助zyc采纳,获得10
1秒前
都大锤发布了新的文献求助10
1秒前
YY88687321完成签到 ,获得积分20
1秒前
1秒前
XXaaxxxx发布了新的文献求助10
1秒前
David发布了新的文献求助10
2秒前
楠易驳回了思源应助
2秒前
小陈要当院士完成签到 ,获得积分10
2秒前
3秒前
er发布了新的文献求助10
4秒前
欣欣向荣发布了新的文献求助10
4秒前
英姑应助Kong采纳,获得10
5秒前
善学以致用应助gwentea采纳,获得10
5秒前
黄色妖姬发布了新的文献求助10
6秒前
溪鱼完成签到,获得积分10
6秒前
清爽的代双完成签到,获得积分10
7秒前
Lidoo发布了新的文献求助20
7秒前
细腻慕青完成签到,获得积分10
7秒前
积极干饭发布了新的文献求助10
8秒前
8秒前
awu发布了新的文献求助10
8秒前
8秒前
林轩完成签到,获得积分10
9秒前
泡泡儿发布了新的文献求助10
9秒前
酷波er应助呼呼呼采纳,获得10
9秒前
HQ完成签到,获得积分20
10秒前
艾云欣发布了新的文献求助10
10秒前
虚心的仙人掌完成签到,获得积分10
11秒前
12秒前
慧子完成签到 ,获得积分10
13秒前
欢喜书易完成签到,获得积分10
14秒前
Freja发布了新的文献求助10
14秒前
14秒前
乌拉拉完成签到,获得积分10
15秒前
15秒前
ured发布了新的文献求助10
15秒前
黄色妖姬完成签到,获得积分10
17秒前
贾西贝完成签到 ,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799502
关于积分的说明 7835226
捐赠科研通 2456813
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628189
版权声明 601655