A practical introduction to using the drift diffusion model of decision-making in cognitive psychology, neuroscience, and health sciences

认知 认知神经科学 心理学 计算神经科学 认知科学 复制 计算模型 数据科学 认知心理学 计算机科学 人工智能 神经科学 数学 统计
作者
Catherine E. Myers,Alejandro Interian,Ahmed A. Moustafa
出处
期刊:Frontiers in Psychology [Frontiers Media]
卷期号:13 被引量:52
标识
DOI:10.3389/fpsyg.2022.1039172
摘要

Recent years have seen a rapid increase in the number of studies using evidence-accumulation models (such as the drift diffusion model, DDM) in the fields of psychology and neuroscience. These models go beyond observed behavior to extract descriptions of latent cognitive processes that have been linked to different brain substrates. Accordingly, it is important for psychology and neuroscience researchers to be able to understand published findings based on these models. However, many articles using (and explaining) these models assume that the reader already has a fairly deep understanding of (and interest in) the computational and mathematical underpinnings, which may limit many readers' ability to understand the results and appreciate the implications. The goal of this article is therefore to provide a practical introduction to the DDM and its application to behavioral data - without requiring a deep background in mathematics or computational modeling. The article discusses the basic ideas underpinning the DDM, and explains the way that DDM results are normally presented and evaluated. It also provides a step-by-step example of how the DDM is implemented and used on an example dataset, and discusses methods for model validation and for presenting (and evaluating) model results. Supplementary material provides R code for all examples, along with the sample dataset described in the text, to allow interested readers to replicate the examples themselves. The article is primarily targeted at psychologists, neuroscientists, and health professionals with a background in experimental cognitive psychology and/or cognitive neuroscience, who are interested in understanding how DDMs are used in the literature, as well as some who may to go on to apply these approaches in their own work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓聪健发布了新的文献求助10
刚刚
2秒前
王鹏喆完成签到 ,获得积分10
2秒前
雾蓝完成签到,获得积分10
4秒前
李爱国应助美少女壮士采纳,获得10
4秒前
un完成签到,获得积分10
4秒前
5秒前
5秒前
小蘑菇应助糊涂的MJ采纳,获得10
6秒前
王鹏喆关注了科研通微信公众号
6秒前
马上毕业发布了新的文献求助10
6秒前
液氧发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
小吴同志发布了新的文献求助10
9秒前
11秒前
废话鱼完成签到 ,获得积分10
11秒前
12秒前
du关闭了du文献求助
13秒前
量子星尘发布了新的文献求助10
14秒前
博修发布了新的文献求助10
14秒前
jiachun完成签到,获得积分10
14秒前
Jasper应助单薄的南蕾采纳,获得10
15秒前
18秒前
18秒前
19秒前
19秒前
神奇宝贝完成签到,获得积分10
19秒前
咔什么嚓完成签到,获得积分10
21秒前
21秒前
鲑鱼完成签到 ,获得积分10
22秒前
余一台发布了新的文献求助10
25秒前
在水一方应助zhangjian19237采纳,获得10
26秒前
梧桐发布了新的文献求助10
26秒前
27秒前
深林盛世完成签到,获得积分10
28秒前
所所应助科研通管家采纳,获得10
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150