A Multiresolution Details Enhanced Attentive Dual-UNet for Hyperspectral and Multispectral Image Fusion

多光谱图像 计算机科学 高光谱成像 人工智能 图像分辨率 小波 模式识别(心理学) 图像融合 计算机视觉 多分辨率分析 小波变换 特征提取 特征(语言学) 光学(聚焦) 图像(数学) 离散小波变换 光学 物理 哲学 语言学
作者
Jian Fang,Jingxiang Yang,Abdolraheem Khader,Liang Xiao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 638-655 被引量:6
标识
DOI:10.1109/jstars.2022.3228941
摘要

The fusion-based super-resolution of hyperspectral images (HSIs) draws more and more attention in order to surpass the hardware constraints intrinsic to hyperspectral imaging systems in terms of spatial resolution. Low-resolution (LR)-HSI is combined with a high-resolution multispectral image (HR-MSI) to achieve HR-HSI. In this article, we propose multiresolution details enhanced attentive dual-UNet to improve the spatial resolution of HSI. The entire network contains two branches. The first branch is the wavelet detail extraction module, which performs discrete wavelet transform on MSI to extract spatial detail features and then passes through the encoding–decoding. Its main purpose is to extract the spatial features of MSI at different scales. The latter branch is the spatio-spectral fusion module, which aims to inject the detail features of the wavelet detail extraction network into the HSI to reconstruct the HSI better. Moreover, this network uses an asymmetric feature selective attention model to focus on important features at different scales. Extensive experimental results on both simulated and real data show that the proposed network architecture achieves the best performance compared with several leading HSI super-resolution methods in terms of qualitative and quantitative aspects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助圣斗士采纳,获得10
刚刚
21完成签到 ,获得积分10
1秒前
2秒前
八九发布了新的文献求助10
2秒前
CipherSage应助aa采纳,获得30
3秒前
浮游应助Liz111采纳,获得10
4秒前
新羽完成签到,获得积分10
4秒前
FashionBoy应助铁瓜李采纳,获得10
4秒前
畅快自行车完成签到,获得积分10
4秒前
小破网完成签到 ,获得积分0
4秒前
5秒前
SciGPT应助在南方看北方采纳,获得10
5秒前
王丹靖完成签到 ,获得积分10
6秒前
7秒前
无私安白发布了新的文献求助10
7秒前
8秒前
努力哥完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助100
11秒前
可爱的函函应助SKF采纳,获得20
12秒前
12秒前
12秒前
13秒前
Xxuan完成签到,获得积分10
13秒前
13秒前
东方三问完成签到,获得积分10
13秒前
grassroot发布了新的文献求助10
14秒前
禾禾完成签到,获得积分10
14秒前
倒霉的芒果完成签到 ,获得积分10
14秒前
白华苍松发布了新的文献求助10
15秒前
卷卷发布了新的文献求助10
15秒前
欢喜不悔发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
求助人员应助Wd采纳,获得10
18秒前
传奇3应助Painkiller_采纳,获得10
18秒前
19秒前
19秒前
田様应助Sakura采纳,获得10
19秒前
卷卷应助等待的秋双采纳,获得10
19秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586279
求助须知:如何正确求助?哪些是违规求助? 4669574
关于积分的说明 14778915
捐赠科研通 4619294
什么是DOI,文献DOI怎么找? 2530818
邀请新用户注册赠送积分活动 1499652
关于科研通互助平台的介绍 1467830