Bidirectional Atomic Iron Catalysis of Sulfur Redox Conversion in High‐Energy Flexible ZnS Battery

多硫化物 过电位 氧化还原 材料科学 催化作用 阴极 电池(电) 硫黄 电化学 碳纤维 吸附 无机化学 分解 化学工程 电极 冶金 有机化学 化学 电解质 功率(物理) 复合材料 物理化学 工程类 物理 复合数 量子力学
作者
Weiwei Zhang,Mingli Wang,Jingkang Ma,Hong Zhang,Lin Fu,Bin Song,Songtao Lu,Ke Lu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (11) 被引量:66
标识
DOI:10.1002/adfm.202210899
摘要

Abstract To achieve the full theoretical potential of high energy ZnS electrochemistry, the incomplete and sluggish conversion during battery discharging and high reactivation energy barrier during battery recharging associated with the sulfur cathodes must be overcome. Herein, the atomically dispersed Fe sites with FeN 4 coordination are experimentally and theoretically predicted as bidirectional electrocatalytic hotspots to simultaneously manipulate the complete sulfur conversion and minimize the energy barrier of ZnS decomposition. It is discovered that the Fe sites were favorable for strong sulfur and possible zinc polysulfide intermediate adsorption, and ensure nearly complete sulfur to ZnS conversion during discharge. For the following recharging process, the electrodeposited ZnS can be readily reversible charged back to S without a noticeable activation overpotential around FeN 4 moieties comparing to pure carbon matrixes. As expected, the freestanding iron embedded carbon fiber cloth supported sulfur cathode delivers a high specific capacity of 1143 mAh g −1 and a lower voltage hysteresis of 0.61 V. As elaborated by postmortem analysis, the degradation mechanism of ZnS cell is the accumulation of inactive ZnS crystals on the cathode side rather than the Zn metallic depletion. More encouragingly, a flexible solid‐state ZnS battery with a high discharge capacity and stable reversibility is also demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mxr完成签到,获得积分10
刚刚
khh完成签到 ,获得积分10
1秒前
Akim应助vvA11采纳,获得10
1秒前
1秒前
1秒前
蓝天发布了新的文献求助10
3秒前
keyaner发布了新的文献求助10
3秒前
是谁还没睡完成签到 ,获得积分10
3秒前
3秒前
4秒前
科研通AI6应助yangyajie采纳,获得10
5秒前
丘比特应助lawrenceip0926采纳,获得10
5秒前
5秒前
KIKI完成签到,获得积分10
5秒前
fuchao发布了新的文献求助10
5秒前
khh关注了科研通微信公众号
5秒前
6秒前
李伟完成签到,获得积分10
6秒前
星辰完成签到,获得积分10
6秒前
sakyadamo发布了新的文献求助10
6秒前
科研通AI6应助上山的吗喽采纳,获得10
7秒前
悦耳的灵完成签到 ,获得积分10
7秒前
cheng发布了新的文献求助10
8秒前
8秒前
Vv完成签到 ,获得积分10
8秒前
小二郎应助Jerez采纳,获得10
9秒前
Jasper应助韩修杰采纳,获得10
9秒前
orixero应助10711采纳,获得10
9秒前
积极嚓茶完成签到,获得积分10
10秒前
Hiiiiii发布了新的文献求助10
10秒前
10秒前
敬之发布了新的文献求助10
11秒前
研友_VZG7GZ应助清欢采纳,获得10
11秒前
11秒前
11秒前
可爱的函函应助谦让靖儿采纳,获得10
12秒前
wei998发布了新的文献求助10
12秒前
隐形曼青应助liu采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901