Bidirectional Atomic Iron Catalysis of Sulfur Redox Conversion in High‐Energy Flexible ZnS Battery

多硫化物 过电位 氧化还原 材料科学 催化作用 阴极 电池(电) 硫黄 电化学 碳纤维 吸附 无机化学 分解 化学工程 电极 冶金 有机化学 化学 电解质 功率(物理) 复合材料 物理化学 工程类 物理 复合数 量子力学
作者
Weiwei Zhang,Mingli Wang,Jingkang Ma,Hong Zhang,Lin Fu,Bin Song,Songtao Lu,Ke Lu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (11) 被引量:66
标识
DOI:10.1002/adfm.202210899
摘要

Abstract To achieve the full theoretical potential of high energy ZnS electrochemistry, the incomplete and sluggish conversion during battery discharging and high reactivation energy barrier during battery recharging associated with the sulfur cathodes must be overcome. Herein, the atomically dispersed Fe sites with FeN 4 coordination are experimentally and theoretically predicted as bidirectional electrocatalytic hotspots to simultaneously manipulate the complete sulfur conversion and minimize the energy barrier of ZnS decomposition. It is discovered that the Fe sites were favorable for strong sulfur and possible zinc polysulfide intermediate adsorption, and ensure nearly complete sulfur to ZnS conversion during discharge. For the following recharging process, the electrodeposited ZnS can be readily reversible charged back to S without a noticeable activation overpotential around FeN 4 moieties comparing to pure carbon matrixes. As expected, the freestanding iron embedded carbon fiber cloth supported sulfur cathode delivers a high specific capacity of 1143 mAh g −1 and a lower voltage hysteresis of 0.61 V. As elaborated by postmortem analysis, the degradation mechanism of ZnS cell is the accumulation of inactive ZnS crystals on the cathode side rather than the Zn metallic depletion. More encouragingly, a flexible solid‐state ZnS battery with a high discharge capacity and stable reversibility is also demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱紫祎应助文件撤销了驳回
1秒前
2秒前
peng1发布了新的文献求助10
2秒前
2秒前
3秒前
bkagyin应助自由元菱采纳,获得10
3秒前
粽子完成签到,获得积分10
4秒前
研友_VZG7GZ应助谢梓良采纳,获得10
4秒前
5秒前
5秒前
6秒前
小马甲应助没有熬夜采纳,获得10
6秒前
懒懒发布了新的文献求助10
7秒前
8秒前
哈哈发布了新的文献求助10
8秒前
上官若男应助Wri采纳,获得10
8秒前
研友_VZG7GZ应助满意的不二采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
谢梓良完成签到,获得积分10
11秒前
11秒前
平常寻冬发布了新的文献求助50
11秒前
深情安青应助Cdws采纳,获得10
11秒前
13秒前
13秒前
13秒前
13秒前
赘婿应助何处芳歇采纳,获得10
14秒前
核桃发布了新的文献求助10
14秒前
15秒前
跃天杜完成签到,获得积分10
15秒前
ssllmm发布了新的文献求助10
16秒前
16秒前
北望发布了新的文献求助20
18秒前
英俊的铭应助天际采纳,获得10
18秒前
cqwswfl发布了新的文献求助10
18秒前
Ffan完成签到 ,获得积分10
18秒前
懒懒完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736