Bidirectional Atomic Iron Catalysis of Sulfur Redox Conversion in High‐Energy Flexible ZnS Battery

多硫化物 过电位 氧化还原 材料科学 催化作用 阴极 电池(电) 硫黄 电化学 碳纤维 吸附 无机化学 分解 化学工程 电极 冶金 有机化学 化学 电解质 功率(物理) 复合材料 物理化学 工程类 物理 复合数 量子力学
作者
Weiwei Zhang,Mingli Wang,Jingkang Ma,Hong Zhang,Lin Fu,Bin Song,Songtao Lu,Ke Lu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (11) 被引量:66
标识
DOI:10.1002/adfm.202210899
摘要

Abstract To achieve the full theoretical potential of high energy ZnS electrochemistry, the incomplete and sluggish conversion during battery discharging and high reactivation energy barrier during battery recharging associated with the sulfur cathodes must be overcome. Herein, the atomically dispersed Fe sites with FeN 4 coordination are experimentally and theoretically predicted as bidirectional electrocatalytic hotspots to simultaneously manipulate the complete sulfur conversion and minimize the energy barrier of ZnS decomposition. It is discovered that the Fe sites were favorable for strong sulfur and possible zinc polysulfide intermediate adsorption, and ensure nearly complete sulfur to ZnS conversion during discharge. For the following recharging process, the electrodeposited ZnS can be readily reversible charged back to S without a noticeable activation overpotential around FeN 4 moieties comparing to pure carbon matrixes. As expected, the freestanding iron embedded carbon fiber cloth supported sulfur cathode delivers a high specific capacity of 1143 mAh g −1 and a lower voltage hysteresis of 0.61 V. As elaborated by postmortem analysis, the degradation mechanism of ZnS cell is the accumulation of inactive ZnS crystals on the cathode side rather than the Zn metallic depletion. More encouragingly, a flexible solid‐state ZnS battery with a high discharge capacity and stable reversibility is also demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜甜的平蓝完成签到,获得积分10
1秒前
2秒前
2秒前
潇洒飞丹完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
Baywreath完成签到,获得积分10
7秒前
竹筏过海应助Lei采纳,获得30
7秒前
马皓发布了新的文献求助10
7秒前
8秒前
田字格发布了新的文献求助10
9秒前
北极星发布了新的文献求助10
10秒前
11秒前
南原给南原的求助进行了留言
11秒前
12秒前
Wenjian7761完成签到,获得积分10
12秒前
缪缪发布了新的文献求助10
14秒前
老实的石头完成签到,获得积分10
14秒前
小吴同学发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
腼腆的若雁完成签到,获得积分10
18秒前
18秒前
fuiee发布了新的文献求助10
18秒前
小开心完成签到,获得积分10
18秒前
北极星完成签到,获得积分10
19秒前
cccc完成签到 ,获得积分10
19秒前
20秒前
Dogged完成签到 ,获得积分10
21秒前
耶啵耶啵完成签到 ,获得积分10
22秒前
mentality完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
23秒前
VDC应助机智寻雪采纳,获得30
23秒前
23秒前
jack_kunn发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714