计算机科学
人工神经网络
人工智能
反向传播
算法
推论
尖峰神经网络
延迟(音频)
机器学习
模式识别(心理学)
电信
作者
Kazuma Suetake,Shin-ichi Ikegawa,Ryuji Saiin,Yoshihide Sawada
标识
DOI:10.1016/j.neunet.2022.12.008
摘要
As the scales of neural networks increase, techniques that enable them to run with low computational cost and energy efficiency are required. From such demands, various efficient neural network paradigms, such as spiking neural networks (SNNs) or binary neural networks (BNNs), have been proposed. However, they have sticky drawbacks, such as degraded inference accuracy and latency. To solve these problems, we propose a single-step spiking neural network (S3NN), an energy-efficient neural network with low computational cost and high precision. The proposed S3NN processes the information between hidden layers by spikes as SNNs. Nevertheless, it has no temporal dimension so that there is no latency within training and inference phases as BNNs. Thus, the proposed S3NN has a lower computational cost than SNNs that require time-series processing. However, S3NN cannot adopt naïve backpropagation algorithms due to the non-differentiability nature of spikes. We deduce a suitable neuron model by reducing the surrogate gradient for multi-time step SNNs to a single-time step. We experimentally demonstrated that the obtained surrogate gradient allows S3NN to be trained appropriately. We also showed that the proposed S3NN could achieve comparable accuracy to full-precision networks while being highly energy-efficient.
科研通智能强力驱动
Strongly Powered by AbleSci AI