S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks

计算机科学 人工神经网络 人工智能 反向传播 算法 推论 尖峰神经网络 延迟(音频) 机器学习 模式识别(心理学) 电信
作者
Kazuma Suetake,Shin-ichi Ikegawa,Ryuji Saiin,Yoshihide Sawada
出处
期刊:Neural Networks [Elsevier]
卷期号:159: 208-219 被引量:5
标识
DOI:10.1016/j.neunet.2022.12.008
摘要

As the scales of neural networks increase, techniques that enable them to run with low computational cost and energy efficiency are required. From such demands, various efficient neural network paradigms, such as spiking neural networks (SNNs) or binary neural networks (BNNs), have been proposed. However, they have sticky drawbacks, such as degraded inference accuracy and latency. To solve these problems, we propose a single-step spiking neural network (S3NN), an energy-efficient neural network with low computational cost and high precision. The proposed S3NN processes the information between hidden layers by spikes as SNNs. Nevertheless, it has no temporal dimension so that there is no latency within training and inference phases as BNNs. Thus, the proposed S3NN has a lower computational cost than SNNs that require time-series processing. However, S3NN cannot adopt naïve backpropagation algorithms due to the non-differentiability nature of spikes. We deduce a suitable neuron model by reducing the surrogate gradient for multi-time step SNNs to a single-time step. We experimentally demonstrated that the obtained surrogate gradient allows S3NN to be trained appropriately. We also showed that the proposed S3NN could achieve comparable accuracy to full-precision networks while being highly energy-efficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄的半完成签到,获得积分10
1秒前
隐形的小刺猬完成签到 ,获得积分10
1秒前
xiaofan完成签到,获得积分20
2秒前
锂离子发布了新的文献求助10
3秒前
王jh完成签到 ,获得积分10
4秒前
ZeKaWa应助Vintoe采纳,获得10
4秒前
fighting发布了新的文献求助10
5秒前
刘岩完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
猪猪hero应助wuxunxun2015采纳,获得10
6秒前
7秒前
GLv完成签到,获得积分10
8秒前
9秒前
嫁接诺贝尔应助自然醒采纳,获得10
9秒前
9秒前
森森发布了新的文献求助10
10秒前
冬天发布了新的文献求助10
10秒前
刘岩发布了新的文献求助10
10秒前
科研的神发布了新的文献求助10
10秒前
华仔应助养乐多敬你采纳,获得10
10秒前
猪猪hero应助养乐多敬你采纳,获得10
10秒前
科研通AI2S应助养乐多敬你采纳,获得10
10秒前
10秒前
11秒前
无花果应助正直的西牛采纳,获得10
12秒前
12秒前
13秒前
13秒前
zsl完成签到,获得积分10
13秒前
hh发布了新的文献求助10
13秒前
啵啵完成签到,获得积分20
13秒前
瘦瘦发布了新的文献求助10
13秒前
13秒前
酷波er应助Carl采纳,获得10
14秒前
付研琪发布了新的文献求助10
14秒前
yang发布了新的文献求助10
15秒前
ML发布了新的文献求助10
15秒前
wxj发布了新的文献求助10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592