S3NN: Time step reduction of spiking surrogate gradients for training energy efficient single-step spiking neural networks

计算机科学 人工神经网络 人工智能 反向传播 算法 推论 尖峰神经网络 延迟(音频) 机器学习 模式识别(心理学) 电信
作者
Kazuma Suetake,Shin-ichi Ikegawa,Ryuji Saiin,Yoshihide Sawada
出处
期刊:Neural Networks [Elsevier]
卷期号:159: 208-219 被引量:5
标识
DOI:10.1016/j.neunet.2022.12.008
摘要

As the scales of neural networks increase, techniques that enable them to run with low computational cost and energy efficiency are required. From such demands, various efficient neural network paradigms, such as spiking neural networks (SNNs) or binary neural networks (BNNs), have been proposed. However, they have sticky drawbacks, such as degraded inference accuracy and latency. To solve these problems, we propose a single-step spiking neural network (S3NN), an energy-efficient neural network with low computational cost and high precision. The proposed S3NN processes the information between hidden layers by spikes as SNNs. Nevertheless, it has no temporal dimension so that there is no latency within training and inference phases as BNNs. Thus, the proposed S3NN has a lower computational cost than SNNs that require time-series processing. However, S3NN cannot adopt naïve backpropagation algorithms due to the non-differentiability nature of spikes. We deduce a suitable neuron model by reducing the surrogate gradient for multi-time step SNNs to a single-time step. We experimentally demonstrated that the obtained surrogate gradient allows S3NN to be trained appropriately. We also showed that the proposed S3NN could achieve comparable accuracy to full-precision networks while being highly energy-efficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助南音采纳,获得10
刚刚
李健应助南音采纳,获得10
刚刚
爆米花应助南音采纳,获得10
1秒前
缓慢的高山应助南音采纳,获得10
1秒前
缓慢的高山应助南音采纳,获得10
1秒前
xx应助南音采纳,获得10
1秒前
1秒前
1秒前
方雪冰完成签到,获得积分10
1秒前
2秒前
在水一方应助善良的以亦采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
费费发布了新的文献求助10
4秒前
xwshe97发布了新的文献求助10
4秒前
泡泡完成签到,获得积分10
5秒前
答题先写解完成签到 ,获得积分10
5秒前
5秒前
团结友爱完成签到,获得积分10
5秒前
科研通AI6应助安河桥采纳,获得10
6秒前
嘿嘿发布了新的文献求助10
6秒前
好久不见发布了新的文献求助10
6秒前
俭朴亦凝完成签到,获得积分20
7秒前
bai发布了新的文献求助10
7秒前
可爱的函函应助7788采纳,获得10
7秒前
慕青应助迅速如波采纳,获得10
7秒前
李健的小迷弟应助lwq采纳,获得10
8秒前
xiamovivi发布了新的文献求助10
8秒前
yzy完成签到,获得积分10
8秒前
Georges-09发布了新的文献求助10
8秒前
asudvbcbjd完成签到,获得积分10
8秒前
8秒前
wu完成签到,获得积分10
8秒前
8秒前
羊羊羊完成签到,获得积分10
8秒前
9秒前
123发布了新的文献求助10
9秒前
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099