类有机物
生物
耳蜗
神经科学
人工耳蜗植入术
听力学
人工耳蜗植入
医学
作者
Mingyu Xia,Jiaoyao Ma,Mingxuan Wu,Luo Guo,Yan Chen,Geng‐Lin Li,Shan Sun,Renjie Chai,Huawei Li,Wenyan Li
标识
DOI:10.1016/j.stemcr.2022.11.024
摘要
Functional cochlear hair cells (HCs) innervated by spiral ganglion neurons (SGNs) are essential for hearing, whereas robust models that recapitulate the peripheral auditory circuity are still lacking. Here, we developed cochlear organoids with functional peripheral auditory circuity in a staging three-dimensional (3D) co-culture system by initially reprogramming cochlear progenitor cells (CPCs) with increased proliferative potency that could be long-term expanded, then stepwise inducing the differentiation of cochlear HCs, as well as the outgrowth of neurites from SGNs. The function of HCs and synapses within organoids was confirmed by a series of morphological and electrophysiological evaluations. Single-cell mRNA sequencing revealed the differentiation trajectories of CPCs toward the major cochlear cell types and the dynamic gene expression during organoid HC development, which resembled the pattern of native HCs. We established the cochlear organoids with functional synapses for the first time, which provides a platform for deciphering the mechanisms of sensorineural hearing loss.
科研通智能强力驱动
Strongly Powered by AbleSci AI