Progress Toward Machine Learning Methodologies for Laser-Induced Breakdown Spectroscopy With an Emphasis on Soil Analysis

激光诱导击穿光谱 计算机科学 材料科学 光谱学 纳米技术 环境科学 生化工程 工程类 物理 量子力学
作者
Yingchao Huang,S. S. Harilal,Abdul Bais,Amina Hussein
出处
期刊:IEEE Transactions on Plasma Science [Institute of Electrical and Electronics Engineers]
卷期号:51 (7): 1729-1749 被引量:27
标识
DOI:10.1109/tps.2022.3231985
摘要

Optical emission spectroscopy of laser-produced plasmas, commonly known as laser-induced breakdown spectroscopy (LIBS), is an emerging analytical tool for rapid soil analysis. However, specific challenges with LIBS exist, such as matrix effects and quantification issues, which require further study in the application of LIBS, particularly for the analysis of heterogeneous samples, such as soils. Advancements in the applications of machine learning (ML) methods can address some of these issues, advancing the potential for LIBS in soil analysis. This article aims to review the progress of LIBS application combined with ML methods, focusing on methodological approaches used in reducing matrix effect, feature selection, quantification analysis, soil classification, and self-absorption. The performance of various adopted ML approaches is discussed, including their shortcomings and advantages, to provide researchers with a clear picture of the current status of ML applications in LIBS for improving its analytical capability. The challenges and prospects of LIBS development in soil analysis are proposed, offering a path toward future research. This review article emphasizes ML tools for LIBS soil analysis, which are broadly relevant for other LIBS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Hengjian_Pu采纳,获得10
刚刚
1秒前
许珩发布了新的文献求助10
3秒前
丘比特应助别偷我增肌粉采纳,获得10
4秒前
5秒前
6秒前
orixero应助flysky120采纳,获得10
7秒前
7秒前
guojingjing发布了新的文献求助10
8秒前
UGK完成签到,获得积分20
8秒前
明亮的涵山完成签到,获得积分10
8秒前
酷波er应助雪雪儿采纳,获得10
9秒前
9秒前
9秒前
addd驳回了打打应助
9秒前
悲凉的妙松完成签到,获得积分20
10秒前
杭飞莲发布了新的文献求助10
11秒前
留白完成签到 ,获得积分10
12秒前
猫猫完成签到,获得积分10
12秒前
顾矜应助明亮的涵山采纳,获得10
13秒前
Hengjian_Pu发布了新的文献求助10
13秒前
14秒前
14秒前
scl发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
博慧发布了新的文献求助10
20秒前
肖肖恩完成签到,获得积分20
20秒前
jagger完成签到,获得积分10
21秒前
伍寒烟发布了新的文献求助10
21秒前
scl关闭了scl文献求助
22秒前
梦灵发布了新的文献求助10
22秒前
领导范儿应助张涛采纳,获得30
23秒前
25秒前
早点毕业发布了新的文献求助10
25秒前
FashionBoy应助Ruisha采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309