电催化剂
过电位
分解水
析氧
异质结
电解
材料科学
电解水
电流密度
化学工程
光电子学
化学
催化作用
光催化
电解质
电极
物理化学
电化学
物理
工程类
量子力学
生物化学
作者
Yuanyuan Feng,Gao Deng,Xiangyu Wang,Mengfu Zhu,Qing-Nan Bian,Benshuai Guo
标识
DOI:10.1016/j.ijhydene.2022.11.293
摘要
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI