计算机科学
论证(复杂分析)
信息抽取
管道(软件)
事件(粒子物理)
跳跃式监视
人工智能
自然语言处理
任务(项目管理)
情报检索
工程类
生物化学
化学
物理
系统工程
量子力学
程序设计语言
作者
Xin Xu,Jian Xu,Guoqing Ruan,Hongyi Bao,Jiadong Sun
出处
期刊:Communications in computer and information science
日期:2022-01-01
卷期号:: 21-29
标识
DOI:10.1007/978-981-19-8300-9_3
摘要
This paper presents a winning solution for the CCKS2022 Competition of Event Argument Extraction from Open Source Multimodal Military Equipment Data. The task is to match the textual information extracted from the text corpus with the visual information from images for event argument extraction. For this aim, we introduce a pipeline-based multimodal information extraction framework consisted of three models. The first one is a global pointer model which extracts entity information from the given text corpus, the second one is a yolo model which detects the bounding boxes of entities in the images and the last one is a multimodal matcher which matches the textual information with the visual information of entities for event argument extraction. With our pipeline-based multimodal information extraction framework, we have achieved the first place in the CCKS-2022 competition with a F1-score of 54.15%.
科研通智能强力驱动
Strongly Powered by AbleSci AI