Generalized few-shot object detection in remote sensing images

判别式 人工智能 计算机科学 目标检测 遥感 遗忘 光学(聚焦) 分类器(UML) 模式识别(心理学) 地理 语言学 光学 物理 哲学
作者
Tianyang Zhang,Xiangrong Zhang,Peng Zhu,Xiuping Jia,Xu Tang,Licheng Jiao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 353-364 被引量:48
标识
DOI:10.1016/j.isprsjprs.2022.12.004
摘要

Recently few-shot object detection (FSOD) in remote sensing images (RSIs) has drawn increasing attention. However, the current FSOD methods in RSIs merely focus on the detection performance of few-shot novel classes while ignoring the severe degradation of the base class performance. Generalized few-shot object detection (G-FSOD) aims to solve the FSOD problem without forgetting previous knowledge. In this paper, we focus on the G-FSOD in RSIs and propose a Generalized Few-Shot Detector (G-FSDet) that can learn novel knowledge without forgetting. Through the comprehensive analysis of each component in the detector, a novel efficient transfer-learning framework is presented as the foundation of our G-FSDet, which is more suitable for FSOD in remote sensing scenes. Considering the greater intra-class diversity and lower inter-class separability of geospatial objects, we design a metric-based discriminative loss to learn a more discriminative classifier in the few-shot fine-tuning stage. Furthermore, a representation compensation module is proposed to alleviate the catastrophic forgetting problem by decoupling the representation learning of previous and novel knowledge. Extensive experiments on DIOR and NWPU VHR-10.v2 datasets demonstrate that our proposed G-FSDet achieves competitive novel class performance with minor degradation in the base class, reaching state-of-the-art overall performance among all few-shot settings. The source code is available at (https://github.com/RSer-XDU/G-FSDet).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunzhiyu233发布了新的文献求助10
刚刚
刚刚
缓缓地安静关注了科研通微信公众号
1秒前
1秒前
送外卖了完成签到,获得积分10
1秒前
Blue_Pig完成签到,获得积分10
1秒前
Orange应助feng采纳,获得10
1秒前
2秒前
考虑考虑发布了新的文献求助10
2秒前
毛慢慢发布了新的文献求助10
2秒前
阿宝发布了新的文献求助10
2秒前
深情安青应助通~采纳,获得10
2秒前
Percy完成签到 ,获得积分10
2秒前
xiuxiu_27发布了新的文献求助10
3秒前
顾矜应助千里采纳,获得10
3秒前
神勇的雅香应助妮儿采纳,获得10
3秒前
qi完成签到,获得积分10
4秒前
哒哒发布了新的文献求助10
4秒前
知行完成签到,获得积分10
4秒前
4秒前
5秒前
Yenom发布了新的文献求助10
5秒前
6秒前
滴滴发布了新的文献求助10
7秒前
心灵美发卡完成签到,获得积分10
7秒前
科目三应助浩浩大人采纳,获得10
8秒前
考虑考虑完成签到,获得积分10
8秒前
彪壮的刺猬完成签到,获得积分10
9秒前
杏花饼完成签到,获得积分10
9秒前
Ll发布了新的文献求助10
9秒前
9秒前
汉堡包应助啊娴仔采纳,获得10
10秒前
10秒前
珂伟完成签到,获得积分10
10秒前
鲜艳的帅哥完成签到,获得积分10
11秒前
wkjsdsg完成签到,获得积分10
11秒前
大七完成签到 ,获得积分10
11秒前
11秒前
jogrgr发布了新的文献求助10
12秒前
lll发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759