Explainability-driven model improvement for SOH estimation of lithium-ion battery

电池(电) 可靠性工程 锂(药物) 锂离子电池 估计 计算机科学 离子 工程类 化学 系统工程 医学 功率(物理) 物理 热力学 内科学 有机化学
作者
Fujin Wang,Zhibin Zhao,Zhi Zhai,Zuogang Shang,Ruqiang Yan,Xuefeng Chen
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:232: 109046-109046 被引量:68
标识
DOI:10.1016/j.ress.2022.109046
摘要

Deep neural networks have been widely used in battery health management, including state-of-health (SOH) estimation and remaining useful life (RUL) prediction, with great success. However, traditional neural networks still lack transparency in terms of explainability due to their “black-box” nature. Although a number of explanation methods have been reported, there is still a gap in research efforts towards improving the model benefiting from explanations. To bridge this gap, we propose an explainability-driven model improvement framework for lithium-ion battery SOH estimation. To be specific, the post-hoc explanation technique is used to explain the model. Beyond explaining, we feed the insights back to model to guide model training. Thus, the trained model is inherently explainable, and the performance of the model can be improved. The superiority and effectiveness of the proposed framework are validated on different datasets and different models. The experimental results show that the proposed framework can not only explain the decision of the model, but also improve the model’s performance. Our code is open source and available at: https://github.com/wang-fujin/Explainability-driven_SOH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
garatasari完成签到,获得积分10
2秒前
儒雅盼曼完成签到 ,获得积分10
2秒前
5秒前
pcx发布了新的文献求助10
5秒前
IvyLee完成签到,获得积分10
6秒前
儒雅盼曼关注了科研通微信公众号
7秒前
在水一方应助哈哈哈采纳,获得10
7秒前
8秒前
醉酒笑红尘完成签到,获得积分10
8秒前
10秒前
pluto应助淡挞采纳,获得50
11秒前
李明完成签到,获得积分10
11秒前
杰西卡卡给杰西卡卡的求助进行了留言
11秒前
Singularity应助朴素的荠采纳,获得10
11秒前
灵泽发布了新的文献求助30
13秒前
无聊的凉面完成签到,获得积分10
13秒前
16秒前
CyndiaSUN完成签到,获得积分10
17秒前
18秒前
18秒前
Lucas应助1111111采纳,获得10
19秒前
CR7应助木木采纳,获得10
19秒前
匆匆完成签到,获得积分10
19秒前
娜娜完成签到,获得积分10
19秒前
20秒前
孟孟1215发布了新的文献求助10
21秒前
好久不见发布了新的文献求助10
22秒前
斯文败类应助科研通管家采纳,获得30
22秒前
奥特超曼应助科研通管家采纳,获得10
22秒前
奥特超曼应助科研通管家采纳,获得10
22秒前
yar应助科研通管家采纳,获得10
22秒前
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
娜娜发布了新的文献求助10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
23秒前
Rondab应助科研通管家采纳,获得30
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075