A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement

生物 基因调控网络 计算生物学 基因 特质 表型 基因组 数量性状位点 性状 遗传学 系统生物学 基因表达 计算机科学 程序设计语言
作者
Yongming Chen,Yiwen Guo,Panfeng Guan,Yongfa Wang,Xiaobo Wang,Zihao Wang,Zhen Qin,Shengwei Ma,Mingming Xin,Zhaorong Hu,Yingyin Yao,Zhongfu Ni,Qixin Sun,Weilong Guo,Huiru Peng
出处
期刊:Molecular Plant [Elsevier]
卷期号:16 (2): 393-414 被引量:23
标识
DOI:10.1016/j.molp.2022.12.019
摘要

Abstract

Gene regulation is central to all aspects of organism growth, and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops. However, the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking. In this study, we constructed a wheat integrative gene regulatory network (wGRN) by combining an updated genome annotation and diverse complementary functional datasets, including gene expression, sequence motif, transcription factor (TF) binding, chromatin accessibility, and evolutionarily conserved regulation. wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127 439 target genes, which were further verified using known regulatory relationships, condition-specific expression, gene functional information, and experiments. We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes associated with complex phenotypic traits in genome-wide association studies. In addition, wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks. We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat accessions. Finally, we developed an interactive webserver, wGRN (http://wheat.cau.edu.cn/wGRN), for the community to explore gene regulation and discover trait-associated genes. Collectively, this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的白筠完成签到,获得积分10
刚刚
WWWUBING完成签到,获得积分10
1秒前
小文发布了新的文献求助10
1秒前
MJQ发布了新的文献求助10
1秒前
1秒前
春夏秋冬发布了新的文献求助10
2秒前
2秒前
2秒前
李健的小迷弟应助nn采纳,获得10
2秒前
彭于晏应助sunzhiyu233采纳,获得10
3秒前
3秒前
zzznznnn完成签到,获得积分10
3秒前
3秒前
马保国123发布了新的文献求助10
3秒前
3秒前
慕青应助wsljc134采纳,获得10
3秒前
4秒前
世界尽头完成签到,获得积分10
5秒前
5秒前
君与完成签到,获得积分10
5秒前
yili发布了新的文献求助10
5秒前
6秒前
6秒前
科研通AI5应助专注乐巧采纳,获得10
6秒前
自信晟睿发布了新的文献求助10
6秒前
6秒前
7秒前
七里香完成签到 ,获得积分10
7秒前
handsomecat关注了科研通微信公众号
7秒前
细心映寒完成签到 ,获得积分10
7秒前
7秒前
fff完成签到,获得积分10
7秒前
领导范儿应助MJQ采纳,获得100
7秒前
8秒前
Owen应助世界尽头采纳,获得10
8秒前
echolan发布了新的文献求助10
9秒前
SID完成签到,获得积分10
9秒前
中九完成签到 ,获得积分10
9秒前
Rrr完成签到,获得积分10
9秒前
hehuan0520完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759